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Individual Decision Making
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A distinctive feature of microeconomic theory is that it aims to model economic activity as

an interaction of individual economic agents pursuing their private interests. It is therefore

appropriate that we begin our study of microeconomic theory with an analysis of individual

decision making.

Chapter 1 is short and preliminary. It consists of an introduction to the theory of indi-

vidual decision making considered in an abstract setting. It introduces the decision maker and

her choice problem, and it describes two related approaches to modeling her decisions. One,

the preference-based approach, assumes that the decision maker has a preference relation over

her set of possible choices that satisfies certain rationality axioms. The other, the choice-based

approach, focuses directly on the decision maker’s choice behavior, imposing consistency re-

strictions that parallel the rationality axioms of the preference-based approach.

The remaining chapters in Part One study individual decision making in explicitly eco-

nomic contexts. It is common in microeconomics texts-and this text is no exception-to distin-

guish between two sets of agents in the economy: individual consumers and firms. Because

individual consumers own and run firms and therefore ultimately determine a firm’s actions,

they are in a sense the more fundamental element of an economic model. Hence, we begin our

review of the theory of economic decision making with an examination of the consumption side

of the economy.

Chapters 2 and 3 study the behavior of consumers in a market economy. Chapter 2 be-

gins by describing the consumer’s decision problem and then introduces the concept of the

consumer’s demand function. We then proceed to investigate the implications for the demand

function of several natural properties of consumer demand. This investigation constitutes an

analysis of consumer behavior in the spirit of the choice-based approach introduced in Chapter

1.

In Chapter 3, we develop the classical preference-based approach to consumer demand.

Topics such as utility maximization, expenditure minimization, duality, integrability, and the

measurement of welfare changes are studied there. We also discuss the relation between this

theory and the choice-based approach studied in Chapter 2.

In economic analysis, the aggregate behavior of consumers is often more important than

the behavior of any single consumer. In Chapter 4, we analyze the extent to which the properties

of individual demand discussed in Chapters 2 and 3 also hold for aggregate consumer demand.

In Chapter 5, de study the behavior of the firm. We begin by posing the firm:s decision

problem, introducing its technological constraints and the assumption of profit maximization.

A rich theory, paralleling that for consumer demand, emerges. In an important sense, however,

this analysis constitutes a first step because it takes the objective of profit maximization as a

maintained hypothesis. In the last section of the chapter, we comment on the circumstances

under which profit maximization can be derived as the desired objective of the firm’s owners.

Chapter 6 introduces risk and uncertainty into the theory of individual decision making. In

most economic decision problems, an individual’s or firm’s choices do not result in perfectly
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certain outcomes. The theory of decision making under uncertainty developed in this chapter

therefore has wide-ranging applications to economic problems, many of which we discuss later

in the book.



Chapter 1

Preference and Choice

1.A Introduction

In this chapter, we begin our study of the theory of individual decision making by considering

it in a completely abstract setting. The remaining chapters in Part I develop the analysis in the

context of explicitly economic decisions.

The starting point for any individual decision problem is a set of possible (mutually exclu-

sive) alternatives from which the individual must choose. In the discussion that follows, we

denote this set of alternatives abstractly by X . For the moment, this set can be anything. For

example, when an individual confronts a decision of what career path to follow, the alternatives

in X might be: {go to law school, go to graduate school and study economics, go to business

school,...,become a rock star}. In Chapters 2 and 3, when we consider the consumer’s decision

problem, the elements of the set X are the possible consumption choices.

There are two distinct approaches to modeling individual choice behavior. The first, which

we introduce in Section 1.B, treats the decision maker’s tastes, as summarized in her preference

relation, as the primitive characteristic of the individual. The theory is developed by first impos-

ing rationality axioms on the decision maker’s preferences and then analyzing the consequences

of these preferences for her choice behavior (i.e., on decisions made). This preference-based

approach is the more traditional of the two, and it is the one that we emphasize throughout the

book.

The second approach, which we develop in Section 1.C, treats the individual’s choice be-

havior as the primitive feature and proceeds by making assumptions directly concerning this be-

havior. A central assumption in this approach, the weak axiom of revealed preference, imposes

an element of consistency on choice behavior, in a sense paralleling the rationality assumptions

of the preference-based approach. This choice-based approach has several attractive features. It

leaves room, in principle, for more general forms of individual behavior than is possible with the

preference-based approach. It also makes assumptions about objects that are directly observable

(choice behavior), rather than about things that are not (preferences). Perhaps most importantly,

it makes clear that the theory of individual decision making need not be based on a process of

introspection but can be given an entirely behavioral foundation.

Understanding the relationship between these two different approaches to modeling indi-

vidual behavior is of considerable interest. Section 1.D investigates this question, examining

first the implications of the preference-based approach for choice behavior and then the condi-

5



6 CHAPTER 1. PREFERENCE AND CHOICE

tions under which choice behavior is compatible with the existence of underlying preferences.

(This is an issue that also comes up in Chapters 2 and 3 for the more restricted setting of con-

sumer demand.)

For an in-depth, advanced treatment of the material of this chapter, see Richter (5, 1971).

1.B Preference Relations

In the preference-based approach, the objectives of the decision maker are summarized in a

preference relation, which we denote by %. Technically, % is a binary relation on the set of

alternatives X , allowing the comparison of pairs of alternatives x,y ∈ X . We read x % y as “x is

at least as good as y.” From % , we can derive two other important relations on X :

(i) The strict preference ration, �, defined by

x� y⇔ x% y but not y% x

and read “x is preferred to y”. 1

(ii) The indifference relation, ∼, defined by

x∼ y⇔ x% y and y% x

and read “x is indifferent to y”.

In much of microeconomic theory, individual preferences are assumed to be rational. The

hypothesis of rationality is embodied in two basic assumptions about the preference relation %:

completeness and transitivity.2

Definition 1.B.1. The preference relation % is rational if it possesses the following two prop-

erties:

(i) Completeness: for all x,y ∈ X , we have that x% y or y% x (or both).

(ii) Transitivity: For all x,y,z ∈ X , if x% y and y% z, then x% z.

The assumption that % is complete says that the individual has a well-defined preference

between any two possible alternatives. The strength of the completeness assumption should not

be underestimated. Introspection quickly reveals how hard it is to evaluate alternatives that are

far from the realm of common experience. It takes work and serious reflection to find out one’s

own preferences. The completeness axiom says that this task has taken place: our decision

makers make only meditated choices.

Transitivity is also a strong assumption, and it goes to the heart of the concept of rationality.

Transitivity implies that it is impossible to face the decision maker with a sequence of pairwise

choices in which her preferences appear to cycle: for example, feeling that an apple is at least

1The symbol↔ is read as “if and only if.” The literature sometimes speaks of x% y as “x is weakly preferred to

y” and x� y as “x is strictly preferred to y.” We shall adhere to the terminology introduced above.
2Note that there is no unified terminology in the literature; weak order and complete preorder are common

alternatives to the term rational preference relation. Also, in some presentations, the assumption that % is reflexive

(defined as x % x for all x ∈ X) is added to the completeness and transitivity assumptions. This property is, in fact,

implied by completeness and so is redundant.
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as good as a banana and that a banana is at least as good as an orange but then also preferring

an orange over an apple. Like the completeness property, the transitivity assumption can be

hard to satisfy when evaluating alternatives far from common experience. As compared to

the completeness property, however, it is also more fundamental in the sense that substantial

portions of economic theory would not survive if economic agents could not be assumed to

have transitive preferences.

The assumption that the preference relation % is complete and transitive has implications

for the strict preference and indifference relations � and ∼. These are summarized in Proposi-

tion 1.B.1, whose proof we forgo. (After completing this section, try to establish these properties

yourself in Exercises 1.D and 1.D.)

Proposition 1.B.1. If % is rational then:
(i) � is both irreflexive (x� x never holds) and transitive (if x� y and y� z, then x� z).

(ii) ∼ is reflexive (x∼ x for all x), transitive (if x∼ y and y∼ z, then x∼ z), and symmetric

(if x∼ y, then y∼ x).
(iii) if x∼ y% z, then x� z.

The irreflexivity of � and the reflexivity and symmetry of ∼ are sensible properties for strict

preference and indifference relations. A more important point in Proposition 1.B.1 is that ratio-

nality of % implies that both � and ∼ are transitive. In addition, a transitive-like property also

holds for � when it is combined with an at-least-as-good-as relation, %.

An individual’s preferences may fail to satisfy the transitivity property for a number of reasons.

One difficulty arises because of the problem of just perceptible differences. For example, if we ask an

individual to choose between two very similar shades of gray for painting her room, she may be unable

to tell the difference between the colors and will therefore be indifferent. Suppose now that we offer her

a choice between the lighter of the two gray paints and a slightly lighter shade. She may again be unable

to tell the difference. If we continue in this fashion, letting the paint colors get progressively lighter with

each successive choice experiment, she may express indifference at each step. Yet, if we offer her a

choice between the original (darkest) shade of gray and the final (almost white) color, she would be able

to distinguish between the colors and is likely to prefer one of them. This, however, violates transitivity.

Another potential problem arises when the manner in which alternatives are presented matters for

choice. This is known as the framing problem. Consider the follow’ing example, paraphrased from

Kahneman and Tversky (3, 1984):

Imagine that you are about to purchase a stereo for 125 dollars and a calculator for 15

dollars. The salesman tells you that the calculator is on sale for 5 dollars less at the other

branch of the store, located 20 minutes away. The stereo is the same price there. Would

you make the trip to the other store?

It turns out that the fraction of respondents saying that they would travel to the other store for the 5 dollar

discount is much higher than the fraction who say they would travel when the question is changed so

that the 5 dollar saving is on the stereo. This is so even though the ultimate saving obtained by incurring

the inconvenience of travel is the same in both cases.3 Indeed, we would expect indifference to be the

3Kahneman and Tversky attribute this finding to individuals keeping “mental accounts” in which the savings are

compared to the price of the item on which they are received.
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response to the following question:

Because of a stockout you must travel to the other store to get the two items, but you will

receive 5 dollars off on either item as compensation. Do you care on which item this 5

dollar rebate is given?

If so, however, the individual violates transitivity. To see this, denote

x = Travel to the other store and get a 5 dollar discount on the calculator.

y = Travel to the other store and get a 5 dollar discount on the stereo.

z = Buy both items at the first store.

The first two choices say that x� z and z� y, but the last choice reveals x∼ y. Many problems of framing

arise when individuals are faced with choices between alternatives that have uncertain outcomes (the

subject of Chapter 6). Kahneman and Tversky (1984) provide a number of other interesting examples.

At the same time, it is often the case that apparently intransitive behavior can be explained fruit-

fully as the result of the interaction of several more primitive rational (and thus transitive) preferences.

Consider the following two examples

(i) A household formed by Mom (M), Dad (D), and Child (C) makes decisions by majority voting.

The alternatives for Friday evening entertainment are attending an opera (O), a rock concert (R), or

an ice-skating show (I). The three members of the household have the rational individual preferences:

O �M R �M I, I �D O �D R, R �C I �C O, where �M , �D, �C, are the transitive individual strict

preference relations. Now imagine three majority-rule votes: O versus R, R versus I, and I versus O.

The result of these votes (O will win the first, R the second, and I the third) will make the household’s

preferences % have the intransitive form: O � R � I � O. (The intransitivity illustrated in this example

is known as the Condorcet paradox, and it is a central difficulty for the theory of group decision making.

For further discussion, see Chapter ??.)

(ii) Intransitive decisions may also sometimes be viewed as a manifestation of a change of tastes.

For example, a potential cigarette smoker may prefer smoking one cigarette a day to not smoking and

may prefer not smoking to smoking heavily. But once she is smoking one cigarette a day, her tastes may

change, and she may wish to increase the amount that she smokes. Formally, letting y be abstinence, x

be smoking one cigarette a day, and z be heavy smoking, her initial situation is y, and her preferences

in that initial situation are x � y � z. But once x is chosen over y and z, and there is a change of the

individual’s current situation from y to x, her tastes change to z � x � y. Thus, we apparently have

an intransitivity: z � x � z. This change-of-tastes model has an important theoretical bearing on the

analysis of addictive behavior. It also raises interesting issues related to commitment in decision making

[see Schelling (7, 1979). A rational decision maker will anticipate the induced change of tastes and

will therefore attempt to tie her hand to her initial decision (Ulysses had himself tied to the mast when

approaching the island of the Sirens).

It often happens that this change-of-tastes point of view gives us a well-structured way to think about

nonrational decisions. See Elster (2, 1979) for philosophical discussions of this and similar points.

Utility Functions
In economics, we often describe preference relations by means of a utility function. A

utility function u(x) assigns a numerical value to each element in X , ranking the elements of X

in accordance with the individual’s preferences. This is stated more precisely in Definition ??.
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Definition 1.B.2. A function u : X → R is a utility function representing preference relation %

if, for all x,y ∈ X ,

x% y⇔ u(x)% u(y)

Note that a utility function that represents a preference relation % is not unique. For any

strictly increasing function f : R→ R, v(x) = f (u(x)) is a new utility function representing the

same preferences as u(·); see Exercise 1.D. It is only the ranking of alternatives that matters.

Properties of utility functions that are invariant for any strictly increasing transformation are

called ordinal. Cardinal properties are those not preserved under all such transformations. Thus,

the preference relation associated with a utility function is an ordinal property. On the other

hand, the numerical values associated with the alternatives in X, and hence the magnitude of

any differences in the utility measure between alternatives, are cardinal properties.

The ability to represent preferences by a utility function is closely linked to the assumption

of rationality. In particular, we have the result shown in Proposition 1.B.2.

Proposition 1.B.2. A preference relation % can be represented by a utility function only if it is

rational.

Proof. To prove this proposition, we show that if there is a utility function that represents pref-

erences % ,then % must be complete and transitive.

Completeness. Because u(·) is a real-valued function defined on X , it must be that for any

x,y∈ X , either u(x)% u(y) or u(y)% u(x). But because u(·) is a utility function representing% ,

this implies either that x% y or that y% x (recall Definition 1.B.2). Hence, % must be complete.

Transitivity. Suppose that x% y and y% z. Because u(·) represents%, we must have u(x)%

u(y) and u(y) % u(z). Therefore, u(x) % u(z). Because u(·) represents % , this implies x % z.

Thus, we have shown that x% y and y% z imply x% z, and so transitivity is established. Q.E.D

At the same time, one might wonder, can any rational preference relation % be described

by some utility function? It turns out that, in general, the answer is no. An example where it is

not possible to do so will be discussed in Section ??. One case in which we can always represent

a rational preference relation with a utility function arises when X is finite (see Exercise 1.D).

More interesting utility representation results (e.g., for sets of alternatives that are not finite) will

be presented in later chapters.

1.C Choice Rules

In the second approach to the theory of decision making, choice behavior itself is taken to be the

primitive object of the theory. Formally, choice behavior is represented by means of a choice

structure. A choice structure (B,C(·)) consists of two ingredients:

(i) a is a family (a set) of nonempty subsets of X ; that is, every element of B? is a set

B ⊂ X . By analogy with the consumer theory to be developed in Chapters 2 and 3, we call the

elements B ∈B budget sets. The budget sets in B should be thought of as an exhaustive listing
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of all the choice experiments that the institutionally, physically, or otherwise restricted social

situation can conceivably pose to the decision maker. It need not, however, include all possible

subsets of X . Indeed, in the case of consumer demand studied in later chapters, it will not.

(ii) C(·) is a choice rule (technically, it is a correspondence) that assigns a nonempty set of

chosen elements C(B)⊂ B for every budget set B ∈B?. When C(B) contains a single element,

that element is the individual’s choice from among the alternatives in B. The set C(B) may,

however, contain more than one element. When it does, the elements of C(B) are the alternatives

in B that the decision maker might choose; that is, they are her acceptable alternatives in B. In

this case, the set C(B) can be thought of as containing those alternatives that we would actually

see chosen if the decision maker were repeatedly to face the problem of choosing an alternative

from set B.

Example 1.C.1. Suppose that X = {x,y,z} and B = {{x,y},{x,y,z}}. One possible choice

structure is (B,C1(·)), where the choice rule C1(·) is: C1 ({x,y}) = {x} and C1 ({x,y,z}) = {x}.
In this case, we see x chosen no matter what budget the decision maker faces.

Another possible choice structure is (B,C2(·)), where the choice rule C2(·) is: C2 ({x,y})=
{x} and C2 ({x,y,z}) = {x,y}. In this case, we see x chosen whenever the decision maker faces

budget {x,y}, but we may see either x or y chosen when she faces budget {x,y,z}. �

When using choice structures to model individual behavior, we may want to impose some

“reasonable” restrictions regarding an individual’s choice behavior. An important assumption,

the weak axiom of revealed preference [first suggested by Samuelson; see Chapter 5 in Samuel-

son (6, 1947)], reflects the expectation that an individual’s observed choices will display a cer-

tain amount of consistency. For example, if an individual chooses alternative x (and only that)

when faced with a choice between x and y, we would be surprised to see her choose y when

faced with a decision among x, y, and a third alterative z. The idea is that the choice of x when

facing the alternatives {x,y} reveals a proclivity for choosing x over y that we should expect to

see reflected in the individual’s behavior when faced with the alternatives {x,y,z}.
The weak axiom is stated formally in Definition 1.C.1.

Definition 1.C.1. The choice structure (B,C(·)) satisfies the weak axiom of revealed preference

if the following property holds:
If for some B∈B with x,y∈B we have x∈C(B), then for any B′ in B with x,y∈B′

and y ∈C(B′), we must also have x ∈C(B′).

In words, the weak axiom says that if x is ever chosen when y is available, then there can

be no budget set containing both alternatives for which y is chosen and x is not. Note how

the assumption that choice behavior satisfies the weak axiom captures the consistency idea: If

C({x,y}) = {x}, then the weak axiom says that we cannot have C({x,y,z}) = {y}.4

A somewhat simpler statement of the weak axiom can be obtained by defining a revealed

preference relation %∗ from the observed choice behavior in C(·).
4In fact, it says more: We must have C({x,y,z}) = {x}, = {z}, or = {x,z}. You are asked to show this in Exercise

1.D. See also Exercise 1.D.
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Definition 1.C.2. Given a choice structure (B,C(·)) the revealed preference relation %∗ is

defined by

x%∗ y⇔ there is some B ∈B such that x,y ∈ B and x ∈C(B)

We read x %∗ y as “x is revealed at least as good as y.” Note that the revealed preference

relation %∗ need not be either complete or transitive. In particular, for any pair of alternatives

x and y to be comparable, it is necessary that, for some B ∈ B, we have x,y ∈ B and either

x ∈C(B) or y ∈C(B), or both.

We might also informally say that “x is revealed preferred to y” if there is some B∈B such

that x,y ∈ B, x ∈C(B), and y /∈C(B), that is, if x is ever chosen over y when both are feasible.

With this terminology, we can restate the weak axiom as follows: “If x is revealed at least

as good as y, then y cannot be revealed preferred to x.”

Example 1.C.2. Do the two choice structures considered in Example 1.C.1 satisfy the weak

axiom? Consider choice structure (B,C1(·)). With this choice structure, we have x %∗ y and

x%∗ z, but there is no revealed preference relationship that can be inferred between y and z. This

choice structure satisfies the weak axiom because y and z are never chosen.

Now consider choice structure (B,C2(·)). Because C2({x,y,z}) = {x,y}, we have y %∗ x

(as well as x%∗ y, x%∗ z, and y%∗ z). But because C2({x,y}) = {x}, x is revealed preferred to

y. Therefore, the choice structure (B,C2) violates the weak axiom. �

We should note that the weak axiom is not the only assumption concerning choice behavior

that we may want to impose in any particular setting. For example, in the consumer demand

setting discussed in Chapter 2, we impose further conditions that arise naturally in that context.

The weak axiom restricts choice behavior in a manner that parallels the use of the rational-

ity assumption for preference relations. This raises a question: What is the precise relationship

between the two approaches? In Section 1.D, we explore this matter.

1.D The Relationship between Preference Relations and Choice Rules

We now address two fundamental questions regarding the relationship between the two ap-

proaches discussed so far:

(i) If a decision maker has a rational preference ordering%, do her decisions when facing

choices from budget sets in B necessarily generate a choice structure that satisfies the

weak axiom?

(ii) If an individual’s choice behavior for a family of budget sets B is captured by a

choice structure (B,C(·)) satisfying the weak axiom, is there necessarily a rational

preference relation that is consistent with these choices?

As we shall see, the answers to these two questions are, respectively, “yes” and “maybe”.
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To answer the first question, suppose that an individual has a rational preference rela-

tion % on X . If this individual faces a nonempty subset of alternatives B ⊂ X , her preference-

maximizing behavior is to choose any one of the elements in the set:

C∗(B,%) = {x ∈ B : x% y for every y ∈ B

The elements of set C∗(B,%) are the decision maker’s most preferred alternatives in B. In prin-

ciple, we could have C∗(B,%) = ∅ for some B; but if X is finite, or if suitable (continuity)

conditions hold, then C∗(B,%) will be nonempty.5 From now on, we will consider only prefer-

ences % and families of budget sets B such that C∗(B,%) is nonempty for all B ∈B. We say

that the rational preference relation % generates the choice structure (B,C∗(·,%)).
The result in Proposition 1.D.1 tells us that any choice structure generated by rational

preferences necessarily satisfies the weak axiom.

Proposition 1.D.1. Suppose that % is a rational preference relation. Then the choice structure

generated by %, (B,C∗(·,%)), satisfies the weak axiom.

Proof. Suppose that for some B ∈B, we have x,y ∈ B and x ∈C∗(B,%). By the definition of

C∗(B,%), this implies x % y. To check whether the weak axiom holds, suppose that for some

B′ ∈B with x,y ∈ B′, we have y ∈ C∗(B′,%). This implies that y % z for all z ∈ B′. But we

already know that x % y. Hence, by transitivity, x % z for all z ∈ B′, and so x ∈C∗(B′,%). This

is precisely the conclusion that the weak axiom demands. Q.E.D

Proposition 1.D.1 constitutes the “yes” answer to our first question. That is, if behavior is

generated by rational preferences then it satisfies the consistency requirements embodied in the

weak axiom.

In the other direction (from choice to preferences), the relationship is more subtle. To

answer this second question, it is useful to begin with a definition.

Definition 1.D.1. Given a choice structure (B,C(·)), we say that the rational preference relation

% rationalizes C(·) relative to B if

C(B) =C∗(B,%)

for all B ∈B, that is, if % generates the choice structure (B,C(·)).

In words, the rational preference relation % rationalizes choice rule C(·) on B? if the

optimal choices generated by % (captured by C∗(·,%)) coincide with C(·) for all budget sets in

B. In a sense, preferences explain behavior; we can interpret the decision maker’s choices as if

she were a preference maximizer. Note that in general, there may be more than one rationalizing

preference relation % for a given choice structure (B,C(·)) (see Exercise l.D.l).

Proposition 1.D.1 implies that the weak axiom must be satisfied if there is to be a rational-

izing preference relation. In particular, since C∗(·,%) satisfies the weak axiom for any % , only

a choice rule that satisfies the weak axiom can be rationalized. It turns out, however, that the

weak axiom is not sufficient to ensure the existence. of a rationalizing preference relation.
5Exercise 1.D asks you to establish the nonemptiness of C∗(B,%) for the case where X is finite. For general

results, See Section ?? of the Mathematical Appendix and Section 3.C for a specific application
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Example 1.D.1. Suppose that X = {x,y,z}, B= {{x,y},{y,z},{x,z}}, C({x,y})= {x}, C({y,z})=
{y}, and C({x,z}) = {z}. This choice structure satisfies the weak axiom (you should verify this).

Nevertheless, we cannot have rationalizing preferences. To see this, note that to rationalize the

choices under {x,y} and {y,z} it would be necessary for us to have x � y and y � z. But,

by transitivity, we would then have x � z, which contradicts the choice behavior under {x,z}.
Therefore, there can be no rationalizing preference relation. �

To understand Example 1.D.1, note that the more budget sets there are in B, the more

the weak axiom restricts choice behavior; there are simply more opportunities for the decision

maker’s choices to contradict one another. In Example 1.D.1, the set {x,y,z} is not an element

of B. As it happens, this is crucial (see Exercises 1.D). As we now show in Proposition 1.D.2,

if the family of budget sets B includes enough subsets of X , and if (B,C(·)) satisfies the weak

axiom, then there exists a rational preference relation that rationalizes C(·) relative to B [this

was first shown by Arrow (1, 1959)].

Proposition 1.D.2. If (B,C(·)) is a choice structure such that
(i) the weak axiom is satisfied,

(ii) B includes all subsets of X of up to three elements,
then there is a rational preference relation % that rationalizes C(·) relative to B; that is, C(B) =

C∗(B,%) for all B ∈ B. Furthermore, this rational preference relation is the only preference

relation that does so.

Proof. The natural candidate for a rationalizing preference relation is the revealed preference relation

%∗. To prove the result, we must first show two things: (i) that %∗ is a rational preference relation, and

(ii) that %∗ rationalizes C(·) on B. We then argue, as point (iii), that %∗ is the unique preference relation

that does so.

(i) We first check that %∗ is rational (i.e., that it satisfies completeness and transitivity).

Completeness By assumption (ii), {x,y} ∈B. Since either x or y must be an element of C({x,y}),
we must have x%∗ y, or y%∗ x, or both. Hence %∗ is complete.

Transitivity Let x %∗ y and y %∗ z. Consider the budget set {x,y,z} ∈B. It suffices to prove that

x ∈C({x,y,z}), since this implies by the definition of %∗ that x %∗ z. Because C({x,y,z}) 6= ∅, at least

one of the alternatives x, y, or z must be an element of C({x,y,z}): Suppose that y ∈C({x,y,z}). Since

x %∗ y, the weak axiom ,then yields x ∈ C({x,y,z}), as we want. Suppose instead that z ∈ C({x,y,z});
since y%∗ z, the weak axiom yields y ∈C({x,y,z}), and we are in the previous case.

(ii) We now show that C(B) =C∗(B,%∗) for all B ∈B; that is, the revealed preference relation %∗

inferred from C(·) actually generates C(·). Intuitively, this seems sensible. Formally, we show this in two

steps. First, suppose that x ∈C(B). Then x%∗ y for all y ∈ B; so we have x ∈C∗(B,%∗). This means that

C(B) ⊂C∗(B,%∗). Next, suppose that x ∈C∗(B,%∗). This implies that x %∗ y for all y ∈ B; and so for

each y ∈ B, there must exist some set By ∈B such that x,y ∈ By and x ∈C(By). Because C(B) 6=∅, the

weak axiom then implies that x ∈ C(B). Hence, C∗(B,%∗) ⊂ C(B). Together, these inclusion relations

imply that C(B) =C∗(B,%∗).

(iii) To establish uniqueness, simply note that because B includes all two-element subsets of X , the

choice behavior in C(·) completely determines the pairwise preference relations over X of any rational-

izing preference.
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This completes the proof. Q.E.D

We can therefore conclude from Proposition 1.D.2 that for the special case in which choice

is defined for all subsets of X , a theory based on choice satisfying the weak axiom is completely

equivalent to a theory of decision making based on rational preferences. Unfortunately, this

special case is too special for economics. For many situations of economic interest, such as the

theory of consumer demand, choice is defined only for special kinds of budget sets. In these

settings, the weak axiom does not exhaust the choice implications of rational preferences. We

shall see in Section ??, however, that a strengthening of the weak axiom (which imposes more

restrictions on choice behavior) provides a necessary and sufficient condition for behavior to be

capable of being rationalized by preferences.

Definition 1.D.1 defines a rationalizing preference as one for which C(B) =C∗(B,%). An alternative

notion of a rationalizing preference that appears in the literature requires only that C(B)⊂C∗(B,%); that

is, % is said to rationalize C(·) on B if C(B) is a subset of the most preferred choices generated by %,

C∗(B,%), for every budget B ∈B.

There are two reasons for the possible use of this alternative notion. The first is, in a sense, philo-

sophical. We might want to allow the decision maker to resolve her indifference in some specific manner,

rather than insisting that indifference means that anything might be picked. The view embodied in Def-

inition 1.D.1 (and implicitly in the weak axiom as well) is that if she chooses in a specific manner then

she is, de facto, not indifferent.

The second reason is empirical. If we are trying to determine from data whether an individual’s

choice is compatible with rational preference maximization, we will in practice have only a finite number

of observations on the choices made from any given budget set B. If C(B) represents the set of choices

made with this limited set of observations, then because these limited observations might not reveal all the

decision maker’s preference maximizing choices, C(B)⊂C∗(B,%) is the natural requirement to impose

for a preference relationship to rationalize observed choice data.

Two points are worth noting about the effects of using this alternative notion. First, it is a weaker

requirement. Whenever we can find a preference relation that rationalizes choice in the sense of Def-

inition 1.D.1, we have found one that does so in this other sense, too. Second, in the abstract setting

studied here, to find a rationalizing preference relation in this latter sense is actually trivial: Preferences

that have the individual indifferent among all elements of X will rationalize any choice behavior in this

sense. When this alternative notion is used in the economics literature, there is always an insistence that

the rationalizing preference relation should satisfy some additional properties that are natural restrictions

for the specific economic context being studied.

EXERCISES

Exercise 1.B.1 Prove property (iii) of Proposition 1.B.1.

Exercise 1.B.2 Prove properties (i) and (ii) of Proposition 1.B.1.
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Exercise 1.B.3 Show that if f : R → R is a strictly increasing function and u : X → R is

a utility function representing preference relation %, then the function v : X → R defined by

v(x) = f (u(x)) is also a utility function representing preference relation %.

Exercise 1.B.4 Consider a rational preference relation %. Show that if u(x) = u(y) implies

x∼ y,and if u(x)> u(y) implies x� y, then u(·) is a utility function representing %.

Exercise 1.B.5 Show that if X is finite and % is a rational preference relation on X , then there

is a utility function u : X → R that represents %. [Hint: Consider first the case in which the in-

dividual’s ranking between any two elements of X is strict (i.e., there is never any indifference),

and construct a utility function representing these preferences; then extend your argument to the

general case.]

Exercise 1.C.1 Consider the choice structure (B,C(·)) with R =({x,y},{x,y,z}) and C({x,y})=
{x}. Show that if (B,C(·)) satisfies the weak axiom, then we must have C({x,y,z}) = {x},=
{z}, or = {x,z}.
Exercise 1.C.2 Show that the weak axiom (Definition 1.C.1) is equivalent to the following

property holding:

Suppose that B,B′ ∈ B, that x,y ∈ B, and that x,y ∈ B′. Then if x ∈ C(B) and

y ∈C(B′), we must have {x,y} ⊂C(B) and {x,y} ⊂C(B′).

Exercise 1.C.3 Suppose that choice structure (B,C(·)) satisfies the weak axiom. Consider the

following two possible revealed preferred relations, %∗ and %∗∗:

x�∗ y⇔ there is some B ∈B such that x,y ∈ B, x ∈C(B), and y /∈C(B)

x%∗∗ y⇔ x%∗ y but not y%∗ x

where %∗ is the revealed at-least-as-good-as relation defined in Definition 1.C.2.

(a) Show that%∗ and%∗∗ give the same relation over X ; that is, for any x,y ∈ X , x%∗ y⇔
x%∗∗ y. Is this still true if (B,C(·)) does not satisfy the weak axiom?

(b) Must %∗ be transitive?

(c) Show that if B includes all three-element subsets of X , then %∗ is transitive.

Exercise 1.D.1 Give an example of a choice structure that can be rationalized by several pref-

erence relations. Note that if the family of budgets B includes all the two-element subsets of X ,

then there can be at most one rationalizing preference relation.

Exercise 1.D.2 Show that if X is finite, then any rational preference relation generates a

nonempty choice rule; that is, C(B) 6=∅ for any B⊂ X with B 6=∅.

Exercise 1.D.3 Let X = {x,y,z}, and consider the choice structure (B,C(·)) with

B = {{x,y},{y,z},{x,z},{x,y,z}}

and C({x,y}) = {x}, C({y,z}) = {y}, and C({x,z}) = {z}, as in Example 1.D.1. Show that

(B,C(·)) must violate the weak axiom.

Exercise 1.D.4 Show that a choice structure (B,C(·)) for which a rationalizing preference

relation % exists satisfies the path-invariance property: For every pair B1,B2 ∈ B such that

B1 ∪B2 ∈ B and C(B1)∪C(B2) ∈ B, we have C(B1 ∪B2) = C(C(B1)∪C(B2)), that is, the

decision problem can safely be subdivided. See Plott (4, 1973) for further discussion.
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Exercise 1.D.5 Let X = {x,y,z} and B = {{x,y},{y,z},{z,x}}. Suppose that choice is now

stochastic in the sense that, for every B ∈B, C(B) is a frequency distribution over alternatives

in B. For example, if B = {x,y}, we write C(B) = (Cx(B),Cy(B)), where Cx(B) and Cy(B)

are nonnegative numbers with Cx(B)+Cy(B) = 1. We say that the stochastic choice function

C(·) can be rationalized by preferences if we can find a probability distribution Pr over the

six possible (strict) preference relations on X such that for every B ∈B, C(B) is precisely the

frequency of choices induced by Pr. For example, if B = {x,y}, then x(B) = Pr({�: x � y}).
This concept originates in Thurstone (8, 1927), and it is of considerable econometric interest

(indeed, it provides a theory for the error term in observable choice).

(a) Show that the stochastic choice function C({x,y}) =C({y,z}) =C({z,x}) = (1
2 ,

1
2) can

be rationalized by preferences.

(b) Show that the stochastic choice function C({x,y}) =C({y,z}) =C({z,x}) = (1
4 ,

3
4) is

not rationalizable by preferences.

(c) Determine the 0 < α < 1 at which C({x,y}) = C({y,z}) = C({z,x}) = (α,1− α)

switches from rationalizable to nonrationalizable.
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Chapter 2

Consumer Choice

2.A Introduction

The most fundamental decision unit of microeconomic theory is the consumer. In this chapter,

we begin our study of consumer demand in the context of a market economy. By a market

economy, we mean a setting in which the goods and services that the consumer may acquire are

available for purchase at known prices (or, equivalently, are available for trade for other goods

at known rates of exchange).

We begin, in Sections 2.B to 2.D, by describing the basic elements of the consumer’s

decision problem. In Section 2.B, we introduce the concept of commodities, the objects of

choice for the consumer. Then, in Sections 2.C and 2.D, we consider the physical and economic

constraints that limit the consumer’s choices. The former are captured in the consumption set,

which we discuss in Section 2.C; the latter are incorporated in Section 2.D into the consumer’s

Walrasian budget set.

The consumer’s decision subject to these constraints captured in the consumer’s Walrasian

demand function. In terms of the choice-based approach to individual decision making intro-

duced in Section 1.C, the Walrasian demand function is the consumer’s choice rule. We study

this function and some of its basic properties in Section 2.E. Among them are what we call

comparative statics properties: the ways in which consumer demand changes when economic

constraints vary.

Finally, in Section 2.F, we consider the implications for the consumer’s demand function of

the weak axiom of revealed preference. The central conclusion we reach is that in the consumer

demand setting, the weak axiom is essentially equivalent to the compensated law of demand,

the postulate that prices and demanded quantities move in opposite directions for price changes

that leave real wealth unchanged.

2.B Commodities

The decision problem faced by the consumer in a market economy is to choose consumption lev-

els of the various goods and services that are available for purchase in the market. We call these

goods and services commodities. For simplicity, we assume that the number of commodities is

finite and equal to L (indexed by = 1, · · · ,L).
As a general matter, a commodity vector (or commodity bundle) is a list of amounts of the

19
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different commodities,

x =


x1
...

xL


and can be viewed as a point in RL, the commodity space.1

We can use commodity vectors to represent an individual’s consumption levels. The lth

entry of the commodity vector stands for the amount of commodity l consumed. We then refer

to the vector as a consumption vector or consumption bundle.

Note that time (or, for that matter, location) can be built into the definition of a commodity.

Rigorously, bread today and tomorrow should be viewed as distinct commodities. In a similar

vein, when we deal with decisions under uncertainty in Chapter 6, viewing bread in different

“states of nature” as different commodities can be most helpful.

Although commodities consumed at different times should be viewed rigorously as distinct com-

modities, in practice, economic models often involve some “time aggregation.” Thus, one commodity

might be “bread consumed in the month of February” even though, in principle, bread consumed at each

instant in February should be distinguished. A primary reason for stich time aggregation is that the eco-

nomic data to which the model is being applied are aggregated in this way. The hope of the modeler

is that the commodities being aggregated are sufficiently similar that little of economic interest is being

lost.

We should also note that in some contexts it becomes convenient, and even necessary, to expand

the set of commodities to include goods and services that may potentially be available for purchase but

are not actually so and even some that may be available by means other than market exchange (say,

the experience of “family togetherness”). For nearly all of what follows here, however, the narrow

construction introduced in this section suffices.

2.C The Consumption Set

Consumption choices are typically limited by a number of physical constraints. The simplest

example is when it may be impossible for the individual to consume a negative amount of a

commodity such as bread or water.

Formally, the consumption set is a subset of the commodity space RL, denoted by X ⊂RL,

whose elements are the consumption bundles that the individual can conceivably consume given

the physical constraints imposed by his environment.

Consider the following four examples for the case in which L = 2:

(i) Figure 2.C.1 represents possible consumption levels of bread and leisure in a day. Both

levels must be nonnegative and, in addition, the consumption of more than 24 hours of

leisure in a day is impossible.

1Negative entries in commodity vectors will often represent debits or net outflows of goods. For example, in

Chapter 5, the inputs of a firm are measured as negative numbers.
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(ii) Figure 2.C.2 represents a situation in which the first good is perfectly divisible but the

second is available only in’ nonnegative integer amounts.

(iii) Figure 2.C.3 captures the fact that it is impossible to eat bread at the same instant in

Washington and in New York. [This example is borrowed from Malinvaud (4, 1978).]

(iv) Figure 2.C.4 represents a situation where the consumer requires a minimum of four slices

of bread a day to survive and there are two types of bread, brown and white.

Figure 2.C.1 A consumption set. Figure 2.C.2 A consumption set where good 2 must

be consumed in integer amounts.

Figure 2.C.3 A consumption set where only one

good can be consumed.

Figure 2.C.4 A consumption set reflecting survival

needs.

In the four examples, the constraints are physical in a very literal sense. But the constraints

that we incorporate into the consumption set can also be institutional in nature. For example, a

law requiring that no one work more than 16 hours a day would change the consumption set in

Figure 2.C.1 to that in Figure 2.C.5.

To keep things as straightforward as possible, we pursue our discussion adopting the sim-

plest sort of consumption set:
X = RL

+ =
{

x ∈ RL : xl ≥ 0 for l = 1, · · · ,L
}

the set of all nonnegative bundles of commodities. It is represented in Figure 2.C.6. Whenever

we consider any consumption set X other than RL
+, we shall be explicit about it.

One special feature of the set RL
+ is that it is convex. That is, if two consumption bundles x

and x′ are both elements of RL
+, then the bundle x′′ = αx+(1−α)x′ is also an element of RL

+ for
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any α ∈ [0,1] (see Section ?? of the Mathematical Appendix for the definition and properties

of convex sets).2 The consumption sets in Figure 2.C.1, Figure 2.C.4, Figure 2.C.5, and Figure

2.C.6 are convex sets; those in Figure 2.C.2 and Figure 2.C.3 are not.

Figure 2.C.5 A consumption set reflecting a legal

limit on the number of hours worked.

Figure 2.C.6 The consumption set RL
+

Much of the theory to be developed applies for general convex consumption sets as well as

for RL
+. Some of the results, but not all, survive without the assumption of convexity.3

2.D Competitive Budgets

In addition to the physical constraints embodied in the consumption set, the consumer

faces an important economic constraint: his consumption choice is limited to those commodity

bundles that he can afford.

To formalize this constraint, we introduce two assumptions. First, we suppose that the L

commodities are all traded in the market at dollar prices that are publicly quoted (this is the

principle of completeness, or universality, of markets). Formally, these prices are represented

by the price vector

p =


p1
...

pL

 ∈ RL

which gives the dollar cost for a unit of each of the L commodities. Observe that there is nothing

that logically requires prices to be positive. A negative price simply means that a “buyer” is

actually paid to consume the commodity (which is not illogical for commodities that are “bads,”

such as pollution). Nevertheless, for simplicity, here we always assume p� 0; that is, pl > 0

for every l.

2Recall that x′′ = αx+(1−α)x′ is a vector whose lth entry is x′′l = αxl +(1−α)x′l
3Note that commodity aggregation can help convexify the consumption set. In the example leading to 2.1Fig-

ure 2.C.3, the consumption set could reasonably be taken to be convex if the axes were instead measuring bread

consumption over a period of a month.
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Second, we assume that these prices are beyond the influence of the consumer. This is the

so-called price-taking assumption. Loosely speaking, this assumption is likely to be valid when

the consumer’s demand for any commodity represents only a small fraction of the total demand

for that good.

The affordability of a consumption bundle depends on two things: the market prices p =

(p1, · · · , pL) and the consumer’s wealth level (in dollars) w. The consumption bundle x ∈ RL
+ is

affordable if its total cost does not exceed the consumer’s wealth level w, that is, if4

p · x = p1x1 + · · ·+ pLxL ≤ w

This economic-affordability constraint, when combined with the requirement that x lie in

the consumption set RL
+, implies that the set of feasible consumption bundles consists of the

elements of the set
{

x ∈ RL
+ : p · x≤ w

}
. This set is known as the Walrasian, or competitive

budget set (after Léon Walras).

Definition 2.D.1. The Walrasian, or competitive budget set Bp,w =
{

x ∈ RL
+ : p · x≤ w

}
is the

set of all feasible consumption bundles for the consumer who faces market prices p and has

wealth w.

The consumer’s problem, given prices p and wealth w, can thus be stated as follows:

Choose a consumption bundle x from Bp,w.

A Walrasian budget set Bp,w is depicted in Figure 2.D.1 for the case of L = 2. To focus on

the case in which the consumer has a nondegenerate choice problem, we always assume w > 0

(otherwise the consumer can afford only x = 0).

The set
{

x ∈ RL
+ : p · x = w

}
) is called the budget hyperplane (for the case L = 2, we call it

the budget line). It determines the upper boundary of the budget set. As Figure 2.D.1 indicates,

the slope of the budget line when L = 2, −(p1/p2), captures the rate of exchange between the

two commodities. If the price of commodity 2 decreases (with p1 and w held fixed), say to

p̄2 < p2, the budget set grows larger because more consumption bundles are affordable, and the

budget line becomes steeper. This change is shown in Figure 2.D.2.

Another way to see how the budget hyperplane reflects the relative terms of exchange

between commodities comes from examining its geometric relation to the price vector p. The

price vector p, drawn starting from any point x̄ on the budget hyperplane, must be orthogonal

(perpendicular) to any vector starting at x̄ and lying on the budget hyperplane, This is so because

for any x′ that itself lies on the budget hyperplane, we have p · x′ = p · x̄ = w. Hence, p ·∆x = 0

for ∆x = (x′− x̄). Figure 2.D.3 depicts this geometric relationship for the case L = 2.5

4Often, this constraint is described in the literature as requiring that the cost of planned purchases not exceed

the consumer’s income. In either case, the idea is that the cost of purchases not exceed the consumer’s available

resources. We use the wealth terminology to emphasize that the consumer’s actual problem may be intertemporal,

with the commodities involving purchases over time, and the resource constraint being one of lifetime income (i.e.,

wealth) (see Exercise 2.F).
5To draw the vector p starting from x̄, we draw a vector from point (x̄1, x̄2) to point (x̄1 + p1, x̄2 + p2). Thus,

when we draw the price vector in this diagram, we use the “units” on the axes to represent units of prices rather than

goods.
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Figure 2.D.1 A Walrasian budget set. Figure 2.D.2 The effect of a price change on the

Walrasian budget set.

Figure 2.D.3 The geometric relationship between p

and the budget hyperplane.

The Walrasian budget set Bp,w is a convex set: That is, if bundles x and x′ are both elements

of Bp,w, then the bundle x′′ = αx+(1−α)x′ is also. To see this, note first that because both

x and x′ are nonnegative, x′′ ∈ RL
+. Second, since p · x ≤ w and p · x′lew, we have p · x′′ =

α(p · x)+(1−α)(p · x′)lew. Thus, x′′ ∈ Bp,w =
{

x ∈ RL
+ : p · x≤ w

}
.

The convexity of Bp,w plays a significant role in the development that follows. Note that

the convexity of Bp,w depends on the convexity of the consumption set RL
+. With a more general

consumption set X , Bp,w will be convex as long as X is. (See Exercise 2.F.)

Although Walrasian budget sets are of central theoretical interest, they are by no means the only type

of budget set that a consumer might face in any actual situation. For example, a more realistic description

of the market trade-off between a consumption good and leisure, involving taxes, subsidies, and several

wage rates, is illustrated in Figure 2.D.4. In the figure, the price of the consumption good is 1, and the

consumer earns wage rate s per hour for the first 8 hours of work and s′ > s for additional (“overtime”)

hours. He also faces a tax rate t per dollar on labor income earned above amount M. Note that the budget

set in Figure 2.D.4 is not convex (you are asked to show this in Exercise 2.F). More complicated examples

can readily be constructed and arise commonly in applied work. See Deaton and Muellbauer (2, 1980)
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and Burtless and Hausmann (1, 1975) for more illustrations of this sort.

Figure 2.D.4 A more realistic description of the con-

sumer’s budget set.

2.E Demand Functions and Comparative Statics

The consumer’s Walrasian (or market, or ordinary) demand correspondence x(p,w) as-

signs a set of chosen consumption bundles for each price-wealth pair (p,w). In principle, this

correspondence can be multivalued; that is, there may be more than one possible consumption

vector assigned for a given price-wealth pair (p,w). When this is so, any x ∈ x(p,w) might be

chosen by the consumer when he faces price-wealth pair (p,w). When x(p,w) is single-valued,

we refer to it as a demand function.

Throughout this chapter, we maintain two assumptions regarding the Walrasian demand

correspondence x(p,w): That it is homogeneous of degree zero and that it satisfies Walras’ law.

Definition 2.E.1. The Walrasian demand correspondence x(p,w) is homogeneous of degree zero

if x(α p,αw) = x(p,w) for any p, w and α > 0.

Homogeneity of degree zero says that if both prices and wealth change in the same pro-

portion, then the individual’s consumption choice does not change. To understand this property,

note that a change in prices and wealth from (p,w) to (α p,αw) leads to no change in the con-

sumer’s set of feasible consumption bundles; that is, Bp,w = Bα p,αw. Homogeneity of degree

zero says that the individual’s choice depends only on the set of feasible points.

Definition 2.E.2. The Walrasian demand correspondence x(p,w) satisfies Walras’ law if for

every p� 0 and w > 0, we have p · x = w for all x ∈ x(p,w).

Walras’ law says that the consumer fully expends his wealth. Intuitively, this is a reasonable

assumption to make as long as there is some good that is clearly desirable. Walras’ law should be

understood, broadly: the consumer’s budget may be an intertemporal one allowing for savings

today to be used for purchases tomorrow. What Walras’ law says is that the consumer fully

expends his resources over his lifetime.
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Exercise 2.E.1 Suppose L = 3, and consider the demand function x(p,w) defined by

x1 p,w =
p2

p1 + p2 + p3

w
p1

,

x2 p,w =
p3

p1 + p2 + p3

w
p2

,

x3 p,w =
β p1

p1 + p2 + p3

w
p3

,

Does this demand function satisfy homogeneity of degree zero and Walras’ law when β = 1?

What about when β ∈ (0,1)?

In Chapter 3, where the consumer’s demand x(p,w) is derived from the maximization of

preferences, these two properties (homogeneity of degree zero and satisfaction of Walras’ law)

hold under very general circumstances. In the rest of this chapter, however, we shall simply take

them as assumptions about x(p,w) and explore their consequences.

One convenient implication of x(p,w) being homogeneous of degree zero can be noted

immediately: Although x(p,w) formally has L+1 arguments, we can, with no loss of generality,

fix (normalize) the level of one of the L+ 1 independent variables at an arbitrary level. One

common normalization is pl = 1 for some l. Another is w = 1.6 Hence, the effective number of

arguments in x(p,w) is L.

For the remainder of this section, we assume that x(p,w) is always single-valued. In this

case, we can write the function x(p,w) in terms of commodity-specific demand functions:

x(p,w) =


x1(p,w)

x2(p,w)
...

x3(p,w)


When convenient, we also assume x(p,w) to be continuous and differentiable.

The approach we take here and in Section 2.F can be viewed as an application of the choice-based

framework developed in Chapter 1. The family of Walrasian budget sets is BW = {Bp,w : p� 0,w >

0}. Moreover, by homogeneity of degree zero, x(p,w) depends only on the budget set the consumer

faces. Hence (BW ,x(·)) is a choice structure, as defined in Section 1.C. Note that the choice structure

(BW ,x(cdot)) does not include all possible subsets of X (e.g., it does not include all two- and three-

element subsets of X). This fact will be significant for the relationship between the choice-based and

preference-based approaches to consumer demand.

Comparative Statics
We are often interested in analyzing how the consumer’s choice varies with changes in his wealth

and in prices. The examination of a change in outcome in response to a change in underlying

economic parameters is known as comparative statics analysis.

6We use normalizations extensively in Part ??.
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Wealth effects
For fixed prices p̄, the function of wealth x(p̄,w) is called the consumer’s Engel function. Its

image in RL
+,Ep̄ = {x(p̄,w) : w > 0}, is known as the wealth expansion path. Figure 2.E.1

depicts such an expansion path.

At any (p,w), the derivative ∂xl(p,w)/∂w is known as the wealth effect for the lth good.7

Figure 2.E.1 The wealth expansion path at prices p̄.

A commodity l is normal at (p,w) if ∂xl(p,w)/αw≥ 0; that is, demand is nondecreasing

in wealth. If commodity l’s wealth effect is instead negative, then it is called inferior at (p,w).

If every commodity is normal at all (p,w), then we say that demand is normal.

The assumption of normal demand makes sense if commodities are large aggregates (e.g.,

food, shelter). But if they are very disaggregated (e.g., particular kinds of shoes), then because

of substitution to higher-quality goods as wealth increases, goods. that become inferior at some

level of wealth may be the rule rather than the exception.

In matrix notation, the wealth effects are represented as follows:

Dwx(p,w) =


∂x1(p,w)

∂w
∂x2(p,w)

∂w
...

∂x3(p,w)
∂w

 ∈ RL

Price effects
We can also ask how consumption levels of the various commodities change as prices vary.

Consider first the case where L = 2, and suppose we keep wealth and price p1 fixed. Figure

2.E.2 represents the demand function for good 2 as a function of its own price p2 for various

levels of the price of good 1, with wealth held constant at amount w. Note that, as is customary

in economics, the price variable, which here is the independent variable, is measured on the

vertical axis, and the quantity demanded, the dependent variable, is measured on the horizontal

axis. Another useful representation of the consumers’ demand at different prices is the locus of

7It is also known as the income effect in the literature. Similarly, the wealth expansion path is sometimes referred

to as an income expansion path.
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points demanded in R2
+: as we range over all possible values of p2. This is known as an offer

curve. An example is presented in Figure 2.E.3.

More generally, the derivative ∂xl(p,w)/∂ pk is known as the price effect of pk, the price

of good k, on the demand for good l. Although it may be natural to think that a fall in a good’s

price will lead the consumer to purchase more of it (as in Figure 2.E.3), the reverse situation is

not an economic impossibility. Good l is said to be a Giffen good at (p,w) if ∂xl(p,w)/∂ pl > 0.

For the offer curve depicted in Figure 2.E.4, good 2 is a Giffen good at (p̄, p′2,w).

Figure 2.E.2 The demand for good 2 as a function

of its price (for various levels of p1).

Figure 2.E.3 An offer curve.

Figure 2.E.4 An offer curve where good 2 is inferior

at (p̄, p′2,w).

Low-quality goods may well be Giffen goods for consumers with low wealth levels. For

example, imagine that a poor consumer initially is fulfilling much of his dietary requirements

with potatoes because they are a low-cost way to avoid hunger. If the price of potatoes falls,

he can then afford to buy other, more desirable foods that also keep him from being hungry.

His consumption of potatoes may well fall as a result. Note that the mechanism that leads to

potatoes being a Giffen good in this story involves a wealth consideration: When the price of

potatoes falls, the consumer is effectively wealthier (he can afford to purchase more generally),

and so he buys fewer potatoes. We will be investigating this interplay between price and wealth

effects more extensively in the rest of this chapter and in Chapter 3.
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The price effects are conveniently represented in matrix form as follows:

Dpx(p,w) =


∂x1(p,w)

∂ p1
· · · ∂x1(p,w)

∂ pL
. . .

∂xL(p,w)
∂ p1

· · · ∂xL(p,w)
∂ pL


Implications of homogeneity and Walras’ law for price and wealth eflects
Homogeneity and Walras’ law imply certain restrictions on the comparative statics effects of

consumer demand with respect to prices and wealth.

Consider, first, the implications of homogeneity of degree zero. We know that x(α p,αw)−
x(p,w) = 0 for all α > 0. Differentiating this expression with respect to α , and evaluating the

derivative at α = 1, we get the results shown in Proposition 2.E.1 (the result is also a special

case of Euler’s formula; see Section ?? of the Mathematical Appendix for details).

Proposition 2.E.1. If the Walrasian demand function x(p,w) is homogeneous of degree zero,

then for all p and w:

L

∑
k=1

∂xl(p,w)
∂ pk

pk +
∂xl(p,w)

∂w
w = 0 for l = 1, · · · ,L. (2.E.1)

In matrix notation, this is expressed as

Dpx(p,w)p+Dwx(p,w)w = 0. (2.E.2)

Thus, homogeneity of degree zero implies that the price and wealth derivatives of de-

mand for any good l, when weighted by these prices and wealth, sum to zero. Intuitively, this

weighting arises because when we increase all prices and wealth proportionately, each of these

variables changes in proportion to its initial level.

We can also restate equation (2.E.1) in terms of the elasticities of demand with respect to

prices and wealth. These are defined, respectively, by

εlk(p,w) =
∂xl(p,w)

∂ pk

pk

xl(p,w)

and

εlw(p,w) =
∂xl(p,w)

∂w
w

xl(p,w)
These elasticities give the percentage change in demand for good l per (marginal) percent-

age change in the price of good k or wealth; note that the expression for εlw(·, ·) can be read as

(∆x/x)/(∆w/w). Elasticities arise very frequently in applied work. Unlike the derivatives of de-

mand, elasticities are independent of the units chosen for measuring commodities and therefore

provide a unit-free way of capturing demand responsiveness.

Using elasticities, condition (2.E.1) takes the following form:
L

∑
k=1

εlk(p,w)+ εlw(p,w) = 0 for l = 1, · · · ,L. (2.E.3)

This formulation very directly expresses the comparative statics implication of homogene-

ity of degree zero: An equal percentage change in all prices and wealth leads to no change in

demand.
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Walras’ law, on the other hand, has two implications for the price and wealth effects of

demand. By Walras’ law, we know that p · x(p,w) = w for all p and w. Differentiating this

expression with respect to prices yields the first result, presented in Proposition 2.E.2.

Proposition 2.E.2. If the Walrasian demand function x(p,w) satisfies Walras’ law, then for all

p and w:
L

∑
l=1

pl
∂xl(p,w)

∂ pk
+ xk(p,w) = 0 for k = 1, · · · ,L, (2.E.4)

or, written in matrix notion,8

p ·Dpx(p,w)+x(p,w)T = 0T (2.E.5)

Similarly, differentiating p · x(p,w) = w with respect to w, we get the second result, shown in

Proposition 2.E.3.

Proposition 2.E.3. If the Walrasian demand function x(p,w) satisfies Walras’ law, then for all

p and w:
L

∑
l=1

pl
∂xl(p,w)

∂w
= 1, (2.E.6)

or, written in matrix notation,

p ·Dwx(p,w) = 1. (2.E.7)

The conditions derived in Propositions 2.E.2 and 2.E.3 are sometimes called the properties

of Cournot and Engel aggregation, respectively. They are simply the differential versions of

two facts: That total expenditure cannot change in response to a change in prices and that total

expenditure must change by an amount equal to any wealth change.

Exercise 2.E.2 Show that equations (2.E.4) and (2.E.6) lead to the following two elasticity

formulas:
L

∑
l=1

bl(p,w)εlk(p,w)+bk(p,w) = 0,

and
L

∑
l=1

bl(p,w)εlw(p,w) = 1,

where bl(p,w) = plxl(p,w)/w is the budget share of the consumer’s expenditure on good l given

prices p and wealth w.

2.F The Weak Axiom of Revealed Preference and the Law of De-
mand

In this section, we study the implications of the weak axiom of revealed preference for con-

sumer demand. Throughout the analysis, we continue to assume that x(p,w) is single-valued,

homogeneous of degree zero, and satisfies Walras’ law.9

8Recall that 0T means a row vector of zeros.
9For generalizations to the case of multivalued choice, see Exercise 2.F.
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The weak axiom was already introduced in Section 1.C as a consistency axiom for the

choice-based approach to decision theory. In this section, we explore its implications for the

demand behavior of a consumer. In the preference-based approach to consumer behavior to be

studied in Chapter 3, demand necessarily satisfies the weak axiom. Thus, the results presented

in Chapter 3, when compared with those in this section, will tell us how much more structure is

imposed on consumer demand by the preference-based approach beyond what is implied by the

weak axiom alone.10

In the context of Walrasian demand functions, the weak axiom takes the form stated in the

Definition 2.F.1.

Definition 2.F.1. The Walrasian demand function x(p,w) satisfies the weak axiom of revealed

preference (the WA) if the following property holds for any two price-wealth situations (p,w)

and (p′,w′):

if p · x(p′,w′)≤ w and x(p′,w′) 6= x(p,w), then p′ · x(p,w)> w′.

If you have already studied Chapter 1, you will recognize that this definition is precisely

the specialization of the general statement of the weak axiom presented in Section 1.C to the

context in which budget sets are Walrasian and x(p,w) specifies a unique choice (see Exercise

2.F).

In the consumer demand setting, the idea behind the weak axiom can be put as follows: If

p · x(p′,w′)≤ w and x(p′,w′) 6= x(p,w), then we know that when facing prices p and wealth w,

the consumer chose consumption bundle x(p,w) even though bundle x(p′,w′) was also afford-

able. We can interpret this choice as “revealing” a preference for x(p,w) over x(p′,w′). Now,

we might reasonably expect the consumer to display some consistency in his demand behav-

ior. In particular, given his revealed preference, we expect that he would choose x(p,w) over

x(p′,w′) whenever they are both affordable. If so, bundle x(p,w) must not be affordable at the

price-wealth combination (p′,w′) at which the consumer chooses bundle x(p′,w′). That is, as

required by the weak axiom, we must have p′ · x(p,w)> w′.

The restriction on demand behavior imposed by the weak axiom when L = 2 is illustrated

in Figure 2.F.1. Each diagram shows two budget sets Bp′,w′ and Bp′′,w′′ and their corresponding

choice x(p′,w′) and x(p′′,w′′). The weak axiom tells us that we cannot have both p′ ·x(p′′,w′′)<

w′ and p′′ · x(p′,w′) ≤ w′′. Panels (a) to (c) depict permissible situations, whereas demand in

panels (d) and (e) violates the weak axiom.

Implications of the Weak Axiom
The weak axiom has significant implications for the effects of price changes on demand.

We need to concentrate, however, on a special kind of price change.

As the discussion of Giffen goods in Section 2.E suggested, price changes affect the con-

sumer in two ways. First, they alter the relative cost of different commodities. But, second, they

10Or, stated more properly, beyond what is implied by the weak axiom in conjunction with homogeneity of degree

zero and Walras’ law.
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Figure 2.F.1 Demand in panels (a) to (c) satisfies the weak axiom; demand in panels (d) and (e)

does not.

also change the consumer’s real wealth: An increase in the price of a commodity impoverishes

the consumers of that commodity. To study the implications of the weak axiom, we need to

isolate the first effect.

One way to accomplish this is to imagine a situation in which a change in prices is ac-

companied by a change in the consumer’s wealth that makes his initial consumption bundle

just affordable at the new prices. That is, if the consumer is originally facing prices p and

wealth w and chooses consumption bundle x(p,w), then when prices change to p′, we imag-

ine that the consumer’s wealth is adjusted to w′ = p′ · x(p,w). Thus, the wealth adjustment is

∆w = ∆p · x(p,w), where ∆p = (p′− p). This kind of wealth adjustment is known as Slutsky

wealth compensation. Figure 2.F.2 shows the change in the budget set when a reduction in the

price of good 1 from p1 to p′1 is accompanied by Slutsky wealth compensation. Geometrically,

the restriction is that the budget hyperplane corresponding to (p′,w′) goes through the vector

x(p,w).

We refer to price changes that are accompanied by such compensating wealth changes as
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(Slutsky) compensated price changes.

In Proposition 2.F.1, we show that the weak axiom can be equivalently stated in terms of

the demand response to compensated price changes.

Proposition 2.F.1. Suppose that the Walrasian demand function x(p,w) is homogeneous of

degree zero and satisfies Walras’ law. Then x(p,w) satisfies the weak axiom if and only if the

following property holds:

For any compensated price change from an initial situation (p,w) to a new price-wealth pair

(p′,w′) = (p′, p′ · x(p,w)), we have

(p′− p) ·
[
x(p′,w′)− x(p,w)

]
≤ 0, (2.F.1)

with strict inequality whenever x(p,w) 6= x(p′,w′).

Proof. (i) The weak axiom implies inequality (2.F.1), with strict inequality if x(p,w) 6= x(p′,w′).

The result is immediate if x(p′,w′) = x(p,w), since then (p′− p) · [x(p′,w′)− x(p,w)] = 0. So

suppose that x(p′,w′) 6= x(p,w). The left-hand side of inequality (2.F.1) can be written as

(p′− p) ·
[
x(p′,w′)− x(p,w)

]
= p′ ·

[
x(p′,w′)− x(p,w)

]
− p ·

[
x(p′,w′)− x(p,w)

]
. (2.F.2)

Consider the first term of (2.F.2). Because the change from p to p′ is a compensated price

change, we know that p · x(p,w) = w′. In addition, Walras’ law tells us that w′ = p′ · x(p′,w′).

Hence

p′ ·
[
x(p′,w′)− x(p,w)

]
= 0. (2.F.3)

Now consider the second term of (2.F.2). Because p′ · x(p,w) = w′, x(p,w) is affordable

under price-wealth situation (p′,w′). The weak axiom therefore implies that x(p′,w′) must not

be affordable under price-wealth situation (p,w). Thus, we must have p · x(p′,w′) > w. Since

·x(p,w) = w by Walras’ law, this implies that

p ·
[
x(p′,w′)− x(p,w)

]
> 0 (2.F.4)

Together, (2.F.2), (2.F.3) and (2.F.4) yield the result.

(ii) The weak axiom is implied by (2.F.1) holding for all compensated price changes, with

strict inequality if x(p,w) 6= x(p′,w′). The argument for this direction of the proof uses the

following fact: The weak axiom holds if and only if it holds for all compensated price changes.

That is, the weak axiom holds if, for any two price-wealth pairs (p,w) and (p′,w′), we have

p′− x(p,w)> w′ whenever p · x(p′,w′) = w and x(p′,w′) 6= x(p,w).

To prove the fact stated in the preceding paragraph, we argue that if the weak axiom is violated,

then there must be a compensated price change for which it is violated. To see this, suppose that we have

a violation of the weak axiom, that is, two price-wealth pairs (p′,w′) and (p′′,w′′) such that x(p′,w′) 6=
x(p′′,w′′), p′ · x(p′′,w′′) ≤ w′, and p′′ · x(p′,w′) ≤ w′′. If one of these two weak inequalities holds with

equality, then this is actually a compensated price change and we are done. So assume that, as shown in

Figure 2.F.3, we have p′ · x(p′′,w′′)< w′ and p′′ · x(p′,w′)< w′′.

Now choose the value of a α ∈ (0,1) for which

(α p′+(1−α)p′′) · x(p′,w′) = (α p′+(1−α)p′′) · x(p′′,w′′),

and denote p = α p′+(1−α)p′′ and w = (α p′+(1−α)p′′) ·x(p′,w′). This construction is illustrated in

Figure 2.F.3. We then have
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Figure 2.F.2 A compensated price change from

(p,w) to (p′,w′).

Figure 2.F.3 A compensated price change from

(p,w) to (p′,w′).

αw′+(1−α)w′′ > α p′ · x(p′,w′)+(1−α)p′′ · x(p′,w′)

= w

= p · x(p,w)

= α p′ · x(p,w)+(1−α)p′′ · x(p,w)

Therefore, either p′ · x(p′,w′)< w′ or p′′ · x(p,w)< w′′. Suppose that the first possibility holds (the

argument is identical if it is the second that holds). Then we have x(p,w) 6= x(p′,w′), p · x(p′,w′) = w,

and p′ · x(p,w)< w′, which constitutes a violation of the weak axiom for the compensated price change

from (p′,w′) to (p,w).

Once we know that in order to test for the weak axiom it suffices to consider only compensated

price changes, the remaining reasoning is straightforward. If the weak axiom does not hold,

there exists a compensated price change from some (p′,w′) to some (p,w) such that x(p,w) 6=
x(p′,w′), p · x(p′,w′) = w, and p′ · x(p′,w′) ≤ w′. But since x(·, ·) satisfies Walras’ law, these

two inequalities imply

p ·
[
x(p′,w′)− x(p,w)

]
= 0 and p′ ·

[
x(p′,w′)− x(p,w)

]
≥ 0

Hence, we would have

(p′− p) ·
[
x(p′,w′)− x(p,w)

]
≥ 0 and x(p,w) 6= x(p′,w′),

which is a contradiction to (2.F.1) holding for all compensated price changes [and with strict

inequality when x(p,w) 6= x(p′,w′)]. Q.E.D

The inequality (2.F.1) can be written in shorthand as ∆p ·∆x≤ 0, where ∆p = (p′− p) and

∆x = [x(p′,w′)− x(p,w)]. It can be interpreted as a form of the law of demand: Demand and

price move in opposite directions. Proposition 2.F.1 tells us that the law of demand holds for

compensated price changes. We therefore call it the compensated law of demand.

The simplest case involves the effect on demand for some good l of a compensated change

in its own price pl . When only this price changes, we have ∆p = (0, · · · ,0,∆pl,0, · · · ,0). Since

∆p ·∆x = ∆pl∆xl ,, Proposition 2.F.1 tells us that if ∆pl > 0, then we must have ∆xl < 0. The
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basic argument is illustrated in Figure 2.F.4. Starting at (p,w), a compensated decrease in the

price of good 1 rotates the budget line through x(p,w). The WA allows moves of demand only

in the direction that increases the demand of good 1.

Figure 2.F.4 Demand must be nonincreasing in own

price for a compensated price change.

Figure 2.F.5 Demand for good 1 can fall when its

price decreases for an uncompensated price change.

Figure 2.F.5 should persuade you that the WA (or, for that matter, the preference maximiza-

tion assumption discussed in Chapter 3) is not sufficient to yield the law of demand for price

changes that are not compensated. In the figure, the price change from p to p′ is obtained by a

decrease in the price of good 1, but the weak axiom imposes no restriction on where we place

the new consumption bundle; as drawn, the demand for good 1 falls.

When consumer demand x(p,w) is a differentiable function of prices and wealth, Proposi-

tion 2.F.1 has a differential implication that is of great importance. Consider, starting at a given

price-wealth pair (p,w), a differential change in prices d p. Imagine that we make this a com-

pensated price change by giving the consumer compensation of dw = x(p,w) · d p [this is just

the differential analog of ∆w = x(p,w) ·∆p]. Proposition 2.F.1 tells us that

d p ·dx≤ 0 (2.F.5)

Now, using the chain rule, the differential change in demand induced by this compensated price

change can be written as.

dx = Dpx(p,w)d p+Dwx(p,w)dw (2.F.6)

Hence

dx = Dpx(p,w)d p+Dwx(p,w) [x(p,w) ·d p] (2.F.7)

or equivalently

dx =
[
Dpx(p,w)+Dwx(p,w)x(p,w)T ]d p (2.F.8)

Finally, substituting (2.F.8) into (2.F.5) we conclude that for any possible differential price

change dp, we have

d p ·
[
Dpx(p,w)+Dwx(p,w)x(p,w)T ]d p≤ 0 (2.F.9)

The expression in square brackets in condition (2.F.9) is an LxL matrix, which we denote

by S(p,w). Formally
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S(p,w) =


s11(p,w) · · · s1L(p,w)

...
. . .

...

sL1(p,w) · · · sLL(p,w)

 ,
where the (l,k)th entry is

slk(p,w) =
∂xl(p,w)

∂ pk
+

∂xl(p,w)
∂w

xk(p,w) (2.F.10)

The matrix S(p,w) is known as the substitution, or Slutsky, matrix, and its elements are known

as substitution effects.

The “substitution” terminology is apt because the term slk(p,w) measures the differential

change in the.consumption of commodity l (i.e., the substitution to or from other commodities)

due to a differential change in the price of commodity k when wealth is adjusted so that the

consumer can still just afford his original consumption bundle (i.e., due solely to a change in

relative prices). To see this, note that the change in demand for good l if wealth is left unchanged

is (∂xl(p,w)/∂ pk)d pk. For the consumer to be able to “just afford” his original consumption

bundle, his wealth must vary by the amount xk(p,w)d pk. The effect of this wealth change on

the demand for good l is then (∂xl(p,w)/∂w) [xk(p,w)d pk]. The sum of these two effects is

therefore exactly lk(p,w)d pk.

We summarize the derivation in equations (2.F.5) to (2.F.10) in Proposition 2.F.2.

Proposition 2.F.2. If a differentiable Walrasian demand function x(p,w) satisfies Walras’ law,

homogeneity of degree zero, and the weak axiom, then at any (p,w), the Slutsky matrix S(p,w)

satisfies v ·S(p,w) · v≤ 0 for any v ∈ RL.

A matrix satisfying the property in Proposition 2.F.2 is called negative semidefinite (it is

negative definite if the inequality is strict for all v 6= 0). See Section ?? of the Mathematical

Appendix for more on these matrices.

Note that S(p,w) being negative semidefinite implies that sll(p,w)≤ 0: That is, the substi-

tution effect of good l with respect to its own price is always nonpositive.

An interesting implication of sll(p,w) ≤ 0 is that a good can be a Giffen good at (p,w)

only if it is inferior. In particular, since

sll(p,w) = ∂xl(p,w)/∂ pl +[∂xl(p,w)/∂w]xl(p,w)≤ 0,

if ∂xl(p,w)/∂ pl > 0, we must have ∂xl(p,w)/∂w < 0.

For later reference, we note that Proposition 2.F.2 does not imply, in general, that the matrix

S(p,w) is symmetric.11 For L = 2, S(p,w) is necessarily symmetric (you are asked to show this

in Exercise 2.F). When L > 2, however, S(p,w) need not be symmetric under the assumptions

made so far (homogeneity of degree zero, Walras’ law, and the weak axiom). See Exercises

11A matter of terminology: It is commsn in the mathematical literature that “definite” matrices are assumed to

be symmetric. Rigorously speaking, if no symmetry is implied, the matrix would be called “quasidefinite.” To

simplify terminology, we use “definite” without any supposition about symmetry; if a matrix is symmetric, we say

so explicitly. (See Exercise 2.F.)
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2.F and 2.F for examples. In Chapter 3 (Section ??), we shall see that the symmetry of S(p,w)

is intimately connected with the possibility of generating demand from the maximization of

rational preferences.

Exploiting further the properties of homogeneity of degree zero and Walras’ law, we can

say a bit more about the substitution matrix S(p,w).

Proposition 2.F.3. Suppose that the Walrasian demand function x(p,w) is differentiable, ho-

mogeneous of degree zero, and satisfies Walras’ law. Then p ·S(p,w) = 0 and S(p,w)p = 0 for

any (p,w).

Exercise 2.F.7 Prove Proposition 2.F.3. [Hint: Use Propositions 2.E.1 to 2.E.3.]

It follows from Proposition 2.F.3 that the matrix S(p,w) is always singular (i.e., it has rank

less, than L), and so the negative semidefiniteness of S(p,w) established in Proposition 2.F.2

cannot be extended to negative definiteness (e.g., see Exercise 2.F).

Proposition 2.F.2 establishes negative semidefiniteness of S(p,w) as a necessary implication of the

weak axiom. One might wonder: Is this property sufficient to imply the WA [so that negative semidefi-

niteness of S(p,w) is actually equivalent to the WA]? That is, if we have a demand function x(p,w) that

satisfies Walras’ law, homogeneity of degree zero and has a negative semidefinite substitution matrix,

must it satisfy the weak axiom? The answer is almost, but not quite. Exercise 2.F provides an example of

a demand function with a negative semidefinite substitution matrix that violates the WA. The sufficient

condition is that v · S(p,w)v < 0 whenever v 6= α p for any scalar α; that is, S(p,w) must be negative

definite for all vectors other than those that are proportional to p. This result is due to Samuelson [see

Samuelson (6, 1947) or Kihlstrom, Mas-Colell, and Sonnenschein (5, 1976) for an advanced treatment].

The gap between the necessary and sufficient conditions is of the same nature as the gap between the

necessary and the sufficient second-order conditions for the minimization of a function.

Finally, how would a theory of consumer demand that is based solely on the assumptions

of homogeneity of degree zero, Walras’ law, and the consistency requirement embodied in the

weak action compare with one based on rational preference maximization?

Based on Chapter 1, you might hope that Proposition 1.D.2 implies that the two are equiv-

alent. But we cannot appeal to that proposition here because the family of Walrasian budgets

does not include every possible budget; in particular, it does not include all the budgets formed

by only two- or three-commodity bundles.

In fact, the two theories are not equivalent. For Walrasian demand and functions, the theory

derived from the weak axiom is weaker than the theory derived from rational preferences, in the

sense of implying fewer restrictions. This is shown formally in Chapter 3, where we demonstrate

that if demand is generated from preferences, or is capable of being so generated, then it must

have a symmetric Slutsky matrix at all (p,w). But for the moment, Example 2.F.1, due originally

to Hicks (3, 1956), may be persuasive enough.
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Example 2.F.1. In a three-commodity world, consider the three budget sets determined by the

price vectors p1 = (2,1,2), p2 = (2,2,1), p3 = (1,2,2) and wealth = 8 (the same for the three

budgets). Suppose that the respective (unique) choices are x1 = (1,2,2), x2 = (2,1,2), x3 =

(2,2,1). In Exercise 2.F, you are asked to verify that any two pairs of choices satisfy the WA but

that x3 is revealed preferred to x2, x2 is revealed preferred to xl , and x1 is revealed preferred to x3.

This situation is incompatible with the existence of underlying rational preferences (transitivity

would be violated). �

The reason this example is only persuasive and does not quite settle. the question is that

demand has been defined only for the three given budgets, therefore, we cannot be sure that it

satisfies the requirements of the WA for all possible competitive budgets. To clinch the matter

we refer to Chapter 3.

In summary, there are three primary conclusions to be drawn from Section 2.F:

(i) The consistency requirement embodied in the weak axiom (combined with the homogene-

ity of degree zero and Walras’ law) is equivalent to the compensated law of demand.

(ii) The compensated law of demand, in turn, implies negative semidefiniteness of the substi-

tution matrix S(p,w).

(iii) These assumptions do not imply symmetry of S(p,w), except in the case where L = 2.

EXERCISES

Exercise 2.D.1 A consumer lives for two periods, denoted 1 and 2, and consumes a single

consumption good in each period. His wealth when born is w > 0. What is his (lifetime)

Walrasian budget set?

Exercise 2.D.2 A consumer consumes one consumption good x and hours of leisure h. The

price of the consumption good is p, and the consumer can work at a wage rate of s = 1. What is

the consumer’s Walrasian budget set?

Exercise 2.D.3 Consider an extension of the Walrasian budget set to an arbitrary consumption

set X : Bp,w = {x ∈ X : p · x≤ w}. Assume (p,w)� 0.

(a) If X is the set depicted in Figure 2.C.3, would Bp,w be convex?

(b) Show that if X is a convex set, then Bp,w is as well.

Exercise 2.D.4 Show that the budget set in Figure 2.D.4 is not convex.

Exercise 2.E.1 In text.

Exercise 2.E.2 In text.

Exercise 2.E.3 Use Propositions 2.E.1 to 2.E.3 to show that p ·Dpx(p,w)p =−w. Interpret.

Exercise 2.E.4 Show that if x(p,w) is homogeneous of degree one with respect to w [ie.,

x(p,αw) = αx(p,w) for all α > 0] and satisfies Walras’ law, then εlw(p,w) = 1 for every l.

Interpret. Can you say something about Dwx(p,w) and the form of the Engel functions and

curves in this case?
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Exercise 2.E.5 Suppose that x(p,w) is a demand function which is homogeneous of degree

one with respect to w and satisfies Walras’ law and homogeneity of degree zero. Suppose also

that all the cross-price effects are zero, that is ∂xl(p,w)/∂ pk = 0 whenever k 6= l. Show that this

implies that for every l,xl(p,w) = αw/pl , where αl > 0 is a constant independent of (p,w).

Exercise 2.E.6 Verify that the conclusions of Propositions 2.E.1 to 2.E.3 hold for the demand

function given in Exercise 2.E when β = 1.

Exercise 2.E.7 A consumer in a two-good economy has a demand function x(p,w) that satisfies

Walras’ law. His demand function for the first good is x1(p,w) = αw/p1. Derive his demand

function for the second good. Is his demand function homogeneous of degree zero?

Exercise 2.E.8 Show that the elasticity of demand for good l with respect to price pk,εlk(p,w),

can be written as εlk(p,w) = d ln(xl(p,w))/d ln(pk), where ln(·) is the natural logarithm func-

tion. Derive a similar expression for εlw(p,w). Conclude that if we estimate the parameters

(α0,α1,α2,γ) of the equation ln(xl(p,w)) = α0,α1 ln p1 +α2 ln p2 + γ lnw, these parameter es-

timates provide us with estimates of the elasticities εl1(p,w), εl2(p,w), and εlw(p,w).

Exercise 2.F.1 Show that for Walrasian demand functions, the definition of the weak axiom

given in Definition 2.F.1 coincides with that in Definition 1.C.1.

Exercise 2.F.2 Verify the claim of Example 2.F.1.

Exercise 2.F.3 You are given the following partial information about a consumer’s purchases.

He consumes only two goods.

Year1 Year2

Quantity Price Quantity Price

Good 1 100 100 120 100

Good 2 100 100 ? 80

Over what range of quantities of good 2 consumed in year 2 would you conclude:
(a) That his behavour is inconsistent (i.e., in contradiction with the weak axiom)?

(b) That the consumer’s consumption bundle in year 1 is revealed preferred to that in year 2?

(c) That the consumer’s consumption bundle in year 2 is revealed preferred to that in year l?

(d) That there is insufficient information to justify (a), (b), and/or (c)?

(e) That good 1 is an inferior good (at some price) for this consumer? Assume that the weak

axiom is satisfied.

(f) That good 2 is an inferior good (at some price) for this consumer? Assume that the weak

axiom is satisfied.

Exercise 2.F.4 Consider the consumption of a consumer in two different periods, period 0 and

period 1. Period t prices, wealth, and consumption are pt , wt , and xt = x(pt ,wt ,), respectively.

It is often of applied interest to form an index measure of the quantity consumed by a consumer.

The Laspeyres quantity index computes the change in quantity using period 0 prices as weights:

LQ = (p0 · x1)/(p0 · x0). The Paasche quantity index instead uses period 1 prices as weights:

PQ = (p1 · x1)/(p1 · x0). Finally, we could use the consumer’s expenditure change: EQ = (p1 ·
x1)/(p0 · x0). Show the following:
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(a) If LQ < 1, then the consumer has a revealed preference for x0 over x1.

(b) If PQ > 1, then the consumer has a revealed preference for x1 over x0.

(c) No revealed preference relationship is implied by either EQ > 1 or EQ < 1. Note that at the

aggregate level, EQ corresponds to the percentage change in gross national product.

Exercise 2.F.5 Suppose that x(p,w) is a differentiable demand function that satisfies the weak

axiom, Walras’ law, and homogeneity of degree zero. Show that if x(·, ·) is homogeneous of

degree one with respect to w [i.e., x(p,αw) = αx(p,w) for all (p,w) and α > 0], then the law

of demand holds even for uncompensated price changes. If this is easier, establish only the

infinitesimal version of this conclusion; that is, d p ·Dpx(p,w)d p≤ 0 for any d p.

Exercise 2.F.6 Suppose that x(p,w) is homogeneous of degree zero. Show that the weak axiom

holds if and only if for some w> 0 and all p,p′ we have p′ ·x(p,w)>w whenever p ·x(p′,w)≤w

and x(p′,w) 6= x(p,w).

Exercise 2.F.7 In text.

Exercise 2.F.8 Let ŝlk(p,w)= [pk/xl(p,w)]sli(p,w) be the substitution terms in elasticity form.

Express ŝlk(p,w) in terms of εlk(p,w), εlw(p,w), and bk(p,w).

Exercise 2.F.9 A symmetric n× n matrix A is negative definite if and only if (−1)k |Akk| > 0

for all k ≤ n, where Akk, is the submatrix of A obtained by deleting the last n− k rows and

columns. For semidefiniteness of the symmetric matrix A, we replace the strict inequalities

by weak inequalities and require that the weak inequalities hold for all matrices formed by

permuting the rows and columns of A (see Section M.D of the Mathematical Appendix for

details).
(a) Show that an arbitrary (possibly nonsymmetric) matrix A is negative definite (or semidefi-

nite) if and only if A+AT is negative definite (or semidefinite). Show also that the above

determinant condition (which can be shown to be necessary) is no longer sufficient in the

nonsymmetric case.

(b) Show that for L = 2, the necessary and sufficient condition for the substitution matrix

S(p,w) of rank 1 to be negative semidefinite is that any diagonal entry (i.e., any own-price

substitution effect) be negative.

Exercise 2.F.10 Consider the demand function in Exercise 2.E with β = 1. Assume that w = 1.
(a) Compute the substitution matrix. Show that at p = (1,1,1), it is negative semidefinite but

not symmetric.

(b) Show that this demand function does not satisfy the weak axiom. [Hint: Consider the price

vector p = (1,1,ε) and show that the substitution matrix is not negative semidefinite (for

ε > 0 small).]

Exercise 2.F.11 Show that for L = 2, S(p,w) is always symmetric. [Hint: Use Proposition

2.F.3.]

Exercise 2.F.12 Show that if the Walrasian demand function x(p,w) is generated by a rational

preference relation, than it must satisfy the weak axiom.

Exercise 2.F.13 Suppose that x(p,w) may be multivalued.
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(a) From the definition of the weak axiom given in Section 1.C, develop the generalization of

Definition 2.F.1 for Walrasian demand correspondences.

(b) Show that if x(p,w) satisfies this generalization of the weak axiom and Walras’ law, then

x(·) satisfies the following property:

(*) For any x ∈ x(p,w) and x′ ∈ x(p′,w′), if p · x′ < w, then p · x > w.

(c) Show that the generalized weak axiom and Walras’ law implies the following generalized

version of the compensated law of demand: Starting from any initial position (p,w) with

demand x ∈ x(p,w), for any compensated price change to new prices p′ and wealth level

w′ = p′ · x, we have

(p′− p) · (x′− x)≤ 0

for all x′ ∈ x(p′,w′), with strict inequality if x′ ∈ x(p,w).

(d) Show that if x(p,w) satisfies Walras’ law and the generalized compensated law of demand

defined in (c), then x(p,w) satisfies the generalized weak axiom.

Exercise 2.F.14 Show that if x(p,w) is a Walrasian demand function that satisfies the weak

axiom, then x(p,w) must be homogeneous of degree zero.

Exercise 2.F.15 Consider a setting with L = 3 and a consumer whose consumption set is R3.

The consumer’s demand function x(p,w) satisfies homogeneity of degree zero, Walras’ law and

(fixing p3 = 1) has

x1(p,w) =−p1 + p2

and

x2(p,w) =−p2

Show that this demand function satisfies the weak axiom by demonstrating that its substitution

matrix satisfies v ·S(p,w)v < 0 for all v 6= α p. [Hint: Use the matrix results recorded in Section

M.D of the Mathematical Appendix.] Observe then that the substitution matrix is not symmetric.

(Note: The fact that we allow for negative consumption levels here is not essential for finding a

demand function that satisfies the weak axiom but whose substitution matrix is not symmetric;

with a consumption set allowing only for nonnegative consumption levels, however, we would

need to specify a more complicated demand function.)

Exercise 2.F.16 Consider a setting where L = 3 and a consumer whose consumption set is R3.

Suppose that his demand function x(p,w) is

x1(p,w) =
p2

p3
,

x2(p,w) =− p1

p3
,

x3(p,w) =
w
p3

.

(a) Show that x(p,w) is homogeneous of degree zero in (p,w) and satisfies Walras’ law.

(b) Show that x(p,w) violates the weak axiom.

(c) Show that v ·S(p,w)v = 0 for all v ∈ R3.
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Exercise 2.F.17 In an L-commodity world, a consumer’s Walrasian demand function is

xk(p,w) =
w(

L
∑

l=1
pl

) for k = 1, · · · ,L.

(a) Is this demand function homogeneous of degree zero in (p,w)?

(b) Does it satisfy Walras’ law?

(c) Does it satisfy the weak axiom?

(d) Compute the Slutsky substitution matrix for this demand function. Is it negative semidefi-

nite? Negative definite? Symmetric?



Bibliography

[1] Gary Burtless and Jerry A. Hausman. The effect of taxation on labor supply: Evaluating the

gary negative income tax experiment. Journal of Political Economy, 86(6):1103–1130, 12

1978.

[2] Angus Deaton and John Muellbauer. Economics and Consumer Behavior. Cambridge

University Press, Cambridge, U.K., 1980.

[3] John Hicks. A revision of demand theory. Oxford University Press, Oxford, 1956.

[4] E. Malinvaud. Lectures on Microeconomic Theory. Elsevier, New York, 1978.

[5] Andreu Mas-Colell Richard Kihlstrom and Hugo Sonnenschein. The demand theory of the

weak axiom of revealed preference. Econometrica, 44(5):971–978, 9 1976.

[6] Paul A. Samuelson. Foundations of Economic Analysis. Harvard University Press, Cam-

bridge, Massachusetts, 1947.

43





Chapter 3

Classical Demand Theory

3.A Introduction

In this chapter, we study the classical, preference-based approach to consumer demand.

We begin in Section 3.B by introducing the consumer’s preference relation and some of

its basic properties. We assume throughout that this preference relation is rational, offering

a complete and transitive ranking of the consumer’s possible consumption choices. We also

discuss two properties, monotonicity (or its weaker version, local nonsatiation) and convexity,

that are used extensively in the analysis that follows.

Section 3.C considers a technical issue: the existence and continuity properties of utility

functions that represent the consumer’s preferences. We show that not all preference relations

are representable by a utility function, and we then formulate an assumption on preferences,

known as continuity, that is sufficient to guarantee the existence of a (continuous) utility func-

tion.

In Section 3.D, we begin our study of the consumer’s decision problem by assuming that

there are L commodities whose prices she takes as fixed and independent of her actions (the

price-taking assumption). The consumer’s problem is framed as one of utility maximization

subject to the constraints embodied in the Walrasian budget set. We focus our study on two

objects of central interest: the consumer’s optimal choice, embodied in the Walrasian (or market

or ordinary) —it demand correspondence, and the consumer’s optimal utility value, captured by

the indirect utility function.

Section 3.E introduces the consumer’s expenditure minimization problem, which bears a

close relation to the consumer’s goal of utility maximization. In parallel to our study of the

demand correspondence and value function of the utility maximization problem, we study the

equivalent objects for expenditure minimization. They are known, respectively, as the Hicksian

(or compensated) demand correspondence and the expenditure function. We also provide an

initial formal examination of the relationship between the expenditure minimization and utility

maximization problems.

In Section ??, we pause for an introduction to the mathematical underpinnings of duality

theory. This material offers important insights into the structure of preference-based demand

theory. Section ?? may be skipped without loss of continuity in a first reading of the chapter.

Nevertheless, we recommend the study of its material.

Section ?? continues our analysis of the utility maximization and expenditure minimiza-

45
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tion problems by establishing some of the most important results of demand theory. These

results develop the fundamental connections between the demand and value functions of the

two problems.

In Section ??, we complete the study of the implications of the preference-based theory

of consumer demand by asking how and when we can recover the consumer’s underlying pref-

erences from her demand behavior, an issue traditionally known as the integrability problem.

In addition to their other uses, the results presented in this section tell us that the properties

of consumer demand identified in Sections 3.D to ?? as necessary implications of preference-

maximizing behavior are also sufficient in the sense that any demand behavior satisfying these

properties can be rationalized as preference-maximizing behavior.

The results in Sections 3.D to ?? also allow us to compare the implications of the preference-

based approach to consumer demand with the choice-based theory studied in Section 2.F. Al-

though the differences turn out to be slight, the two approaches are not equivalent; the choice-

based demand theory founded on the weak axiom of revealed preference imposes fewer re-

strictions on demand than does the preference-based theory studied in this chapter. The extra

condition added by the assumption of rational preferences turns out to be the symmetry of the

Slutsky matrix. As a result, we conclude that satisfaction of the weak axiom does not ensure the

existence of a rationalizing preference relation for consumer demand.

Although our analysis in Sections 3.B to ?? focuses entirely on the positive (i.e., descrip-

tive) implications of the preference-based approach, one of the most important benefits of the

latter is that it provides a framework for normative, or welfare, analysis. In Section ??, we take

a first look at this subject by studying the effects of a price change on the consumer’s welfare.

In this. connection, we discuss the use of the traditional concept of Marshallian surplus as a

measure of consumer welfare.

We conclude in Section ?? by returning to the choice-based approach to consumer demand.

We ask whether there is some strengthening of the weak axiom that leads to a choice-based

theory of consumer demand equivalent to the preference-based approach. As an answer, we

introduce the strong axiom of revealed preference and show that it leads to demand behavior

that is consistent with the existence of underlying preferences.

Appendix A discusses some technical issues related to the continuity and differentiability

of Walrasian demand.

For further reading, see the thorough treatment of classical demand theory offered by

Deaton and Muellbauer (1980).

3.B Preference Relations: Basic Properties

In the classical approach to consumer demand, the analysis of consumer behavior begins by

specifying the consumer’s preferences over the commodity bundles in the consumption set X ⊂
RL
+.

The consumer’s preferences are captured by a preference relation % (an ”at-least-as-good-
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as” relation) defined on X that we take to be rational in the sense introduced in Section 1.B;

that is, % is complete and transitive. For convenience, we repeat the formal statement of this

assumption from Definition 1.B.1.1

Definition 3.B.1. The preference relation % on X is rational if it possesses the following two

properties:

(i) Completeness: For all x,y ∈ X , we have that x% y or y% x (or both).

(ii) Transitivity: For all x,y,z ∈ X , if x% y and y% z, then x% z.

In the discussion that follows, we also use two other types of assumptions about prefer-

ences: desirability assumptions and convexity assumptions.

(i) Desirability assumptions. It is often reasonable to assume that larger amounts of com-

modities are preferred to smaller ones. This feature of preferences is captured in the assumption

of monotonicity. For Definition 3.B.2, we assume that the consumption of larger amounts of

goods is always feasible in principle; that is, if x ∈ X and y≥ x, then y ∈ X .

Definition 3.B.2. The preference relation% on X is monotone if x ∈ X and y� x implies y� x.

It is strongly monotone if y≥ x and y 6= x imply that y� x.

The assumption that preferences are monotone is satisfied as long as commodities are

”goods” rather than ”bads”. Even if some commodity is a bad, however, we may still be able to

view preferences as monotone because it is often possible to redefine a consumption activity in

a way that satisfies the assumption. For example, if one commodity is garbage, we can instead

define the individual’s consumption over the ”absence of garbage”.2

Note that if % is monotone, we may have indifference with respect to an increase in the

amount of some but not all commodities. In contrast, strong monotonicity says that if y is larger

than x for some commodity and is no less for any other, then y is strictly preferred to x.

For much of the theory, however, a weaker desirability assumption than monotonicity,

known as local nonsatiation, actually suffices.

Definition 3.B.3. The preference relation % on X is locally nonsatiated if for every x ∈ X and

every ε > 0, there is y ∈ X such that ‖y− x‖ ≤ ε and y� x.3

The test for locally nonsatiated preferences is depicted in Figure 3.B.1 for the case in which

X = RL
+. It says that for any consumption bundle x ∈ RL

+ and any arbitrarily small distance

away from x, denoted by ε > 0, there is another bundle y ∈ RL
+ within this distance from x that

is preferred to x. Note that the bundle y may even have less of every commodity than x, as shown

1See Section 1.B for a thorough discussion of these properties.
2It is also sometimes convenient to view preferences as defined over the level of goods available for consumption

(the stocks of goods on hand), rather than over the consumption levels themselves. In this case, if the consumer can

freely dispose of any unwanted commodities, her preferences over the level of commodities on hand are monotone

as long as some good is always desirable.

3‖x− y‖ is the Euclidean distance between points x and y; that is, ‖x− y‖=
[
∑

L
l=1 (xl − yl)

2
]1/2
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in the figure. Nonetheless, when X = RL
+ local nonsatiation rules out the extreme situation in

which all commodities are bads, since in that case no consumption at all (the point x = 0) would

be a satiation point.

Figure 3.B.1 The test for local nonsatiation.

Figure 3.B.2 (a) A thick indifference set violates local nonsatiation. (b) Preferences compatible with

local nonsatiation.

Exercise 3.B.1 Show the following:

(a) If % is strongly monotone, then it is monotone.

(b) If % is monotone, then it is locally nonsatiated.

Given the preference relation % and a consumption bundle x, we can define three related

sets of consumption bundles. The indifference set containing point x is the set of all bundles that

are indifferent to x; formally, it is {y ∈ X : y ∼ x}. The upper contour set of bundle x is the set

of all bundles that are at least as good as x : {y ∈ X : y % x}. The lower contour set of x is the

set of all bundles that x is at least as good as: {y ∈ X : x% y}.
One implication of local nonsatiation (and, hence, of monotonicity) is that it rules out

”thick” indifference sets. The indifference set in Figure 3.B.2(a) cannot satisfy local nonsatia-

tion because, if it did, there would be a better point than x within the circle drawn. In contrast,
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the indifference set in Figure 3.B.2(b) is compatible with local nonsatiation. Figure 3.B.2(b)

also depicts the upper and lower contour sets of x.

(ii) Convexity assumptions. A second significant assumption, that of convexity of % ,

concerns the trade-offs that the consumer is willing to make among different goods.

Definition 3.B.4. The preference relation% on X is convex if for every x∈ X , the upper contour

set {y∈X : y% x} is convex; that is, if y% x and z% x, then αy+(1−α)z% x for any α ∈ [0,1, ].

Figure 3.B.3(a) depicts a convex upper contour set; Figure 3.B.3(b) shows an upper contour set

that is not convex.

Figure 3.B.3 (a) Convex preferences. (b) Nonconvex preferences.

Convexity is a strong but central hypothesis in economics. It can be interpreted in terms

of diminishing marginal rates of substitution: That is, with convex preferences, from any initial

consumption situation x, and for any two commodities, it takes increasingly larger amounts of

one commodity to compensate for successive unit losses of the other.4

Convexity can also be viewed as the formal expression of a basic inclination of economic

agents for diversification. Indeed, under convexity, if x is indifferent to y, then 1
2 x+ 1

2 y, the

half-half mixture of x and y, cannot be worse than either x or y. In Chapter 6, we shall give a

diversification interpretation in terms of behavior under uncertainty. A taste for diversification is

a realistic trait of economic life. Economic theory would be in serious difficulty if this postulated

propensity for diversification did not have significant descriptive content. But there is no doubt

that one can easily think of choice situations where it is violated. For example, you may like

both milk and orange juice but get less pleasure from a mixture of the two.

Definition 3.B.4 has been stated for a general consumption set X . But de facto, the convexity

assumption can hold only if X is convex. Thus, the hypothesis rules out commodities being consumable

only in integer amounts or situations such as that presented in Figure 2.C.3.

4More generally, convexity is equivalent to a diminishing marginal rate of substitution between any two goods,

provided that we allow for ”composite commodities” formed from linear combinations of the L basic commodities.
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Although the convexity assumption on preferences may seem strong, this appearance should be

qualified in two respects: First, a good number (although not all) of the results of this chapter extend

without modification to the nonconvex case. Second, as we show in Appendix A of Chapter 4 and in Sec-

tion ??, nonconvexities can often be incorporated into the theory by exploiting regularizing aggregation

effects across consumers.

We also make use at times of a strengthening of the convexity assumption.

Definition 3.B.5. The preference relation % on X is strictly convex if for every x, we have that

y% x, z% x, and y 6= z implies αy+(1−α)z� x for all α ∈ (0,1).

Figure 3.B.4 A convex, but not strictly convex, pref-

erence relation.

Figure 3.B.5 Homothetic preferences.

Figure 3.B.6 Quasilinear preferences.

Figure 3.B.3(a) showed strictly convex preferences. In Figure 3.B.4, on the other hand, the

preferences, although convex, are not strictly convex.

In applications (particularly those of an econometric nature), it is common to focus on

preferences for which it is possible to deduce the consumer’s entire preference relation from a

single indifference set. Two examples are the classes of homothetic and quasilinear preferences.

Definition 3.B.6. A monotone preference relation% on X =RL
+ is homothetic if all indifference

sets are related by proportional expansion along rays; that is, if x ∼ y, then αx ∼ αy for any

a≥ 0.
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Figure 3.B.5 depicts a homothetic preference relation.

Definition 3.B.7. The preference relation% on X = (−∞,∞)×RL−1
+ is quasilinear with respect

to commodity 1 (called, in this case, the numeraire commodity) if5

(i) All the indifference sets are parallel displacements of each other along the axis of

commodity 1. That is, if x∼ y, then (x+αe1)∼ (y+αe1) for e1 = (1,0, · · · ,0) and

any α ∈ R.

(ii) Good 1 is desirable; that is, x+αe1 � x for all x and α > 0.

Note that, in Definition 3.B.7, we assume that there is no lower bound on the possible con-

sumption of the first commodity [the consumption set is (−∞,∞)×RL−1
+ ]. This assumption is

convenient in the case of quasilinear preferences (Exercise 3.E will illustrate why). Figure 3.B.6

shows a quasilinear preference relation.

3.C Preference and Utility

For analytical purposes, it is very helpful if we can summarize the consumer’s preferences by

means of a utility function because mathematical programming techniques can then be used to

solve the consumer’s problem. In this section, we study when this can be done. Unfortunately,

with the assumptions made so far, a rational preference relation need not be representable by

a utility function. We begin with an example illustrating this fact and then introduce a weak,

economically natural assumption (called continuity) that guarantees the existence of a utility

representation.

Example 3.C.1. The Lexicographic Preference Relation. For simplicity, assume that X = R2
+.

Define x % y if either “x1 % y1” or “x1 = y1 and x2 ≥ y2” This is known as the lexicographic

preference relation. The name derives from the way a dictionary is organized; that is, com-

modity 1 has the highest priority in determining the preference ordering, just as the first letter

of a word does in the ordering of a dictionary. When the level of the first commodity in two

commodity bundles is the same, the amount of the second commodity in the two bundles deter-

mines the consumer’s preferences. In Exercise ??, you are asked to verify that the lexicographic

.ordering is complete, transitive, strongly monotone, and strictly convex. Nevertheless, it can

be shown that no utility function exists that represents this preference ordering. This is intu-

itive. With this preference ordering, no two distinct bundles are indifferent; indifference sets

are singletons. Therefore, we have two dimensions of distinct indifference sets. Yet, each of

these indifference sets must be assigned, in an order-preserving way, a different utility number

from the one-dimensional real line. In fact, a somewhat subtle argument is actually required

to establish this claim rigorously. It is given, for the more advanced reader, in the following

paragraph. �

5More generally, preferences can be quasilinear with respect to any commodity l.
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Suppose there is a utility function u(·). For every x1, we can pick a rational number r(x1) such

that u(x1,2)> r(x1)> u(x1,1). Note that because of the lexicographic character of preferences, x1 > x′1,

implies r(x1) > r(x′1) [since r(x1) > u(x1,1) > u(x′1,2) > r(x′1)]. Therefore, r(·) provides a one-to-one

function from the set of real numbers (which is uncountable) to the set of rational numbers (which is

countable). This is a mathematical impossibility. Therefore, we conclude that there can be no utility

function representing these preferences.

The assumption that is needed to ensure the existence of a utility function is that the pref-

erence relation be continuous.

Definition 3.C.1. The preference relation % on X is continuous if it is preserved under limits.

That is, for any sequence of pairs {(xn,yn)}∞

n=1 with xn % yn for all n, x = limn→∞ xn, and y =

limn→∞ yn, we have x% y.

Continuity says that the consumer’s preferences cannot exhibit “jumps”, with, for example,

the consumer preferring each element in sequence xn to the corresponding element in sequence

yn but suddenly reversing her preference at the limiting points of these sequences x and y.

An equivalent way to state this notion of continuity is to say that for all x, the upper contour

set {y ∈ X : y% x} and the lower contour set {y ∈ X : x% y} are both closed; that is, they include

their boundaries. Definition 3.C.1 implies that for any sequence of points yn∞
n=1 with x% yn for

all n and y = limn→∞ yn, we have x% y (just let xn = x for all n). Hence, continuity as defined in

Definition 3.C.1 implies that the lower contour set is closed; the same is implied for the upper

contour set. The reverse argument, that closedness of the lower and upper contour sets implies

that Definition 3.C.1 holds, is more advanced and is left as an exercise (Exercise ??).

Example 3.C.1 (continued). Lexicographic preferences are not continuous. To see this, con-

sider the sequence of bundles xn = (l/n,0) and yn = (0, l). For every n, we have xn � yn. But

limn→∞ yn = (0,1) � (0,0) = limn→∞ xn. In words, as long as the first component of x is larger

than that of y, x is preferred to y even if y2 is much larger than x2. But as soon as the first com-

ponents become equal, only the second components are relevant, and so the preference ranking

is reversed at the limit points of the sequence. �

It turns out that the continuity of % is sufficient for the existence of a utility function

representation. In fact, it guarantees the existence of a continuous utility function.

Proposition 3.C.1. Suppose that the rational preference relation % on X is continuous. Then

there is a continuous utility function u(x) that represents %.

Proof. For the case of X = RL
+ and a monotone preference relation, there is a relatively simple

and intuitive proof that we present here with the help of Figure 3.C.1.

Denote the diagonal ray in RL
+ (the locus of vectors with all L components equal) by Z. It

will be convenient to let e designate the L-vector whose elements are all equal to 1. Then αe∈ Z

for all nonnegative scalars α ≥ 0.
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Note that for every x ∈RL
+, monotonicity implies that x% 0. Also note that for any ᾱ such

that ᾱ � x (as drawn in the figure), we have ᾱe % x. Monotonicity and continuity can then be

shown to imply that there is a unique value α(x) ∈ [0, ᾱ] such that α(x)e∼ x.

Figure 3.C.1 Construction of a utility function.

Formally, this can be shown as follows: By continuity, the upper and lower contour sets of x are

closed. Hence, the sets A+ = α ∈ R+ : αe% x and A− = α ∈ R+ : x% αe are nonempty and closed.

Note that by completeness of %, R+ ⊂ (A+ ∪A−). The nonemptiness and closedness of A+ and A−,

along with the fact that R+ is connected, imply that A+∩A− 6=∅. Thus, there exists a scalar α such that

αe � x. Furthermore, by monotonicity, α1e � α2e whenever α1 > α2. Hence, there can be at most one

scalar satisfying αe� x. This scalar is α(x).

We now take α(x) as our utility function; that is, we assign a utility value u(x) = α(x) to

every x. This utility level is also depicted in Figure 3.C.1. We need to check two properties of

this function: that it represents the preference % [i.e., that α(x)≥ α(y)⇔ x% y] and that it is a

continuous function. The latter argument is more advanced, and therefore we present it in small

type.

That α(x) represents preferences follows from its construction. Formally, suppose first that

α(x)≥α(y). By monotonicity, this implies that α(x)e%α(y)e. Since x�α(x)e and y�α(y)e,

we have x% y. Suppose, on the other hand, that x% y. Then α(x)e� x% y� α(y)e; and so by

monotonicity, we must have α(x)≥ α(y). Hence, α(x)≥ α(y)⇔ x% y.

We now argue that α(x) is a continuous function at all x; that is, for any sequence xn∞
n=1 with

x= limn→∞ xn, we have limn→∞ α(xn) =α(x). Hence, consider a sequence xn∞
n=1 such that x= limn→∞ xn.

We note first that the sequence {α(xn)}∞

n=1 must have a convergent subsequence. By monotonicity,

for any ε > 0, α(x′) lies in a compact subset of R+, [α0,α1], for all xprime such that ‖x′− x‖ ≤ ε (see

Figure 3.C.2). Since xn∞
n=1 converges to x, there exists an N such that α(xn) lies in this compact set for

all n > N. But any infinite sequence that lies in a compact set must have a convergent subsequence (see

Section ?? of the Mathematical Appendix).

What remains is to establish that all convergent subsequences of {α(xn)}∞

n=1 converge to α(x).

To see this, suppose otherwise: that there is some strictly increasing function m(·) that assigns to each
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Figure 3.C.2 Proof that the constructed utility func-

tion is continuous.

positive integer n a positive integer m(n) and for which the subsequence
{

α(xm(n))
}∞

n=1
converges to

α ′ 6= α(x). We first show that α ′ > α(x) leads to a contradiction. To begin, note that monotonicity would

then imply that α ′e � α(x)e. Now, let α̂ = 1
2 [α

′+α(x)]. The point α̂e is the midpoint on Z between

α̂e and α(x)e (see Figure 3.C.2). By monotonicity, α̂e� α(x)e. Now, since α

(
xm(n)

)
→ α ′ > α̂ , there

exists an N̄ such that for all n > N̄, α

(
xm(n)

)
> α̂ . Hence, for all such n, xm(n) � α

(
xm(n)

)
e � α̂e

(where the latter relation follows from monotonicity). Because preferences are continuous, this would

imply that x % α̂e. But since x � α(x)e, we get α(x)e % α̂e, which is a contradiction. The argument

ruling out α ′ < α(x) is similar. Thus, since all convergent subsequences of {α(xn)}∞

n=1 must converge

to α(x), we have limn→∞ α(xn) = α(x), and we are done. Q.E.D

From now on, we assume that the consumer’s preference relation is continuous and hence

representable by a continuous utility function. As we noted in Section 1.B, the utility function

u(·) that represents a preference relation % is not unique; any strictly increasing transforma-

tion of u(·), say v(x) = f (u(x)), where f (·) is a strictly increasing function, also represents %.

Proposition 3.C.1 tells us that if % is continuous, there exists some continuous utility function

representing %. But not all utility functions representing % are continuous; any strictly increas-

ing but discontinuous transformation of a continuous utility function also represents %.

For analytical purposes, it is also convenient if u(·) can be assumed to be differentiable. It is

possible, however, for continuous preferences not to be representable by a differentiable utility

function. The simplest example, shown in Figure 3.C.3, is the case of Leontief preferences,

where x′′ % x′ if and only if minx′′1 ,x
′′
2 ≥ minx′1,x

′
2. The nondifferentiability arises because of

the kink in indifference curves when x1 = x2.

Whenever convenient in the discussion that follows, we nevertheless assume utility func-

tions to be twice continuously differentiable. It is possible to give a condition purely in terms of

preferences that implies this property, but we shall not do so here. Intuitively, what is required

is that indifference sets be smooth surfaces that fit together nicely so that the rates at which

commodities substitute for each other depend differentiably on the consumption levels.
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Figure 3.C.3 Leontief preferences cannot be repre-

sented by a differentiable utility function.

Restrictions on preferences translate into restrictions on the form of utility functions. The

property of monotonicity, for example, implies that the utility function is increasing: u(x)> u(y)

if x� y.

The property of convexity of preferences, on the other hand, implies that u(·) is quasi-

concave [and, similarly, strict convexity of preferences implies strict quasiconcavity of u(·)].
The utility function u(·) is quasiconcave if the set

{
y ∈ RL

+ : u(y)≥ u(x)
}

is convex for all x

or, equivalently, if u(αx+(1−α)y) ≥ min{u(x),u(y)} for any x, y and all α ∈ [0,1]. [If the

inequality is strict for all x 6= y and α ∈ (0,1) then u(·) is strictly quasiconcave; for more on

quasiconcavity and strict quasiconcavity see Section ?? of the Mathematical Appendix.] Note,

however, that convexity of % does not imply the stronger property that u(·) is concave [that

u(αx+(1−α)y) ≥ αu(x)+ (1−α)u(y) for any x, y and all α ∈ [0,1]]. In fact, although this

is a somewhat fine point, there may not be any concave utility function representing a particular

convex preference relation %.

In Exercise ??, you are asked to prove two other results relating utility representations and

underlying preference relations:

(i) A continuous % on X = RL
+ is homothetic if and only if it admits a utility function u(x)

that is homogeneous of degree one [i.e., such that u(αx) = αu(x) for all α > 0].

(ii) A continuous % on (−∞,∞)×RL−1
+ is quasilinear with respect to the first commodity if

and only if it admits a utility function u(x) of the form u(x) = x1 +φ(x2, · · · ,xL).

It is important to realize that although monotonicity and convexity of% imply that all utility

functions representing % are increasing and quasiconcave, (i) and (ii) merely say that there is

at least one utility function that has the specified form. Increasingness and quasiconcavity are

ordinal properties of u(·); they are preserved for any arbitrary increasing transformation of

the utility index. In contrast, the special forms of the utility representations in (i) and (ii) are

not preserved; they are —it cardinal properties that are simply convenient choices for a utility

representation.6

6Thus, in this sense, continuity is also a cardinal property of utility functions. See also the discussion of ordinal
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3.D The Utility Maximization Problem

We now turn to the study of the consumer’s decision problem. We assume throughout that

the consumer has a rational, continuous, and locally nonsatiated preference relation, and we

take u(x)to be a continuous utility function representing these preferences. For the sake of

concreteness, we also assume throughout the remainder of the chapter that the consumption set

is X = RL
+.

The consumer’s problem of choosing her most preferred consumption bundle given prices

p� 0 and wealth level w > 0 can now be stated as the following —it utility maximization

problem (UMP):

Max
x≥0

u(x)

s.t. p · x≤ w

In the UMP, the consumer chooses a consumption bundle in the Walrasian budget set

Bp,w =
{

x ∈ RL
+ : p · x≤ w

}
to maximize her utility level. We begin with the results stated

in Proposition 3.D.1.

Proposition 3.D.1. If p� 0 and u(·) is continuous, then the utility maximization problem has

a solution.

Proof. If p� 0, then the budget set Bp,w =
{

x ∈ RL
+ : p · x≤ w

}
is a compact set because it is both

bounded [for any l = 1, · · · ,L, we have xl ≤ (w/pl) for all x ∈ Bp,w] and closed. The result follows from

the fact that a continuous function always has a maximum value on any compact set (set Section ?? of

the Mathematical Appendix). Q.E.D

With this result, we now focus our attention on the properties of two objects that emerge

from the UMP: the consumer’s set of optimal consumption bundles (the solution set of the UMP)

and the consumer’s maximal utility value (the value function of the UMP).

The Walrasian Demand Correspondence/Function
The rule that assigns the set of optimal consumption vectors in the UMP to each price-wealth

situation (p,w)� 0 is denoted by x(p,w) ∈ RL
+ and is known as the Walrasian (or ordinary or

market) demand correspondence. An example for L = 2 is depicted in Figure 3.D.1(a), where

the point x(p,w) lies in the indifference set with the highest utility level of any point in Bp,w.

Note that, as a general matter, for a given (p,w)� 0 the optimal set x(p,w) may have more

than one element, as shown in Figure 3.D.1(b). When x(p,w) is single-valued for all (p,w), we

refer to it as the Walrasian (or ordinary or —it market) demand function.7

and cardinal properties of utility representations in Section 1.B.
7This demand function has also been called the Marshallian demand function. However, this terminology can
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Figure 3.D.1 The utility maximization problem (UMP). (a) Single solution. (b) Multiple solutions.

The properties of x(p,w) stated in Proposition 3.D.2 follow from direct examination of the

UMP.

Proposition 3.D.2. Suppose that u(·) is a continuous utility function representing a locally

nonsatiated preference relation % defined on the consumption set X = RL
+. Then the Walrasian

demand correspondence x(p,w) possesses the following properties:

(i) Homogeneity of degree zero in (p,w) : x(α p,αw) = x(p,w) for any p, w and scalar α > 0.

(ii) Walras’ law: p · x = w for all x ∈ x(p,w).

(iii) Convexity/uniqueness: If% is convex, so that u(·) is quasiconcave, then x(p,w) is a convex

set. Moreover, if % is strictly convex, so that u(·) is strictly quasiconcave, then x(p,w)

consists of a single element.

Proof. We establish each of these properties in turn.

(i) For homogeneity, note that for any scalar a ¿ 0,{
x ∈ RL

+ : α p · x≤ αw
}
=
{

x ∈ RL
+ : p · x≤ w

}
that is, the set of feasible consumption bundles in the UMP does not change when all prices and

wealth are multiplied by a constant α > 0. The set of utility-maximizing consumption bundles

must therefore be the same in these two circumstances, and so x(p,w) = x(α p,αw). Note that

this property does not require any assumptions on u(·).
(ii) Walras’ law follows from local nonsatiation. If p · x < w for some x ∈ x(p,w), then

there must exist another consumption bundle y sufficiently close to x with both p · y < w and

y� x (see Figure 3.D.2). But this would contradict x being optimal in the UMP.

create confusion, and so we do not use it here. In Marshallian partial equilibrium analysis (where wealth effects are

absent), all the different kinds of demand functions studied in this chapter coincide, and so it is not clear which of

these demand functions would deserve the Marshall name in the more general setting.
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Figure 3.D.2 Local nonsatiation implies Walras’

law.

(iii) Suppose that u(·) is quasiconcave and that there are two bundles x and x′, with x 6= x′,

both of which are elements of x(p,w). To establish the result, we show that x′′ = αx+(1−α)x′

is an element of x(p,w) for any α ∈ [O,1]. To start, we know that u(x) = u(x′). Denote this

utility level by u∗. By quasiconcavity, u(x′′) ≥ u∗ [see Figure 3.D.3(a)]. In addition, since

p · x≤ w and p · x′ ≤ w, we also have

p · x′′ = p ·
[
αx+(1−α)x′

]
≤ w

.

Therefore, x′′ is a feasible choice in the UMP (put simply, x′′ is feasible because Bp,w is a convex

set). Thus, since u(x′′)≥ u∗ and x′′ is feasible, we have x′′ ∈ x(p,w). This establishes that x(p,w)

is a convex set if u(·) is quasiconcave.

Suppose now that u(·) is strictly quasiconcave. Following the same argument but using

strict quasiconcavity, we can establish that x′′ is a feasible choice and that u(x′′)> u∗ for all α ∈
(0,1). Because this contradicts the assumption that x and x′ are elements of x(p,w), we conclude

that there can be at most one element in x(p,w). Figure 3.D.3(b) illustrates this argument. Note

the difference from Figure 3.D.3(a) arising from the strict quasiconcavity of u(x). Q.E.D

If u(·) is continuously differentiable, an optimal consumption bundle x∗ ∈ x(p,w) can be

characterized in a very useful manner by means of first-order conditions. The Kuhn-Tucker

(necessary) conditions (see Section ?? of the Mathematical Appendix) say that if x∗ ∈ x(p,w)

is a solution to the UMP, then there exists a Lagrange multiplier λ ≥ 0 such that for all l =

1, · · · ,L:8

∂u(x∗)
∂cl

≤ λ pl, with equality if x∗l > 0. (3.D.1)

8To be fully rigorous, these Kuhn-Tucker necessary conditions are valid only if the constraint qualification con-

dition holds (see Section ?? of the Mathematical Appendix). In the UMP, this is always so. Whenever we use

Kuhn-Tucker necessary conditions without mentioning the constraint qualification condition, this requirement is

met.
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Figure 3.D.3 (a) Convexity of preferences implies convexity of x(p,w). (b) Strict convexity of prefer-

ences implies that x(p,w) is single-valued.

Figure 3.D.4 (a) Interior solution. (b) Boundary solution.

Equivalently, if we let ∇u(x) = [∂u(x)/∂x1, · · · ,∂u(x)/∂xL] denote the gradient vector of u(·)
at x, we can write (3.D.1) in matrix notation as

∇u(x∗)≤ λ p (3.D.2)

and

x∗ · [∇u(x∗)−λ p] = 0. (3.D.3)

Thus, if we are at an interior optimum (i.e., if x∗� 0), we must have

∇u(x∗) = λ p. (3.D.4)

Figure 3.D.4(a) depicts the first-order conditions for the case of an interior optimum when

L = 2. Condition (3.D.4) tells us that at an interior optimum, the gradient vector of the con-

sumer’s utility function ∇u(x∗) must be proportional to the price vector p, as is shown in Figure
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3.D.4(a). If ∇u(x∗)� 0, this is equivalent to the requirement that for any two goods l and k, we

have

∂u(x∗)/∂xl

∂u(x∗)/∂xk
=

pl

pk
(3.D.5)

The expression on the left of (3.D.5) is the marginal rate of substitution of good l for good k at

x∗, MRSlk(x∗); it tells us the amount of good k that the consumer must be given to compensate

her for a one-unit marginal reduction in her consumption of good l.9 In the case where L = 2,

the slope of the consumer’s indifference set at x∗ is precisely — MRS12(x∗). Condition (3.D.5)

tells us that at an interior optimum, the consumer’s marginal rate of substitution between any

two goods must be equal to their price ratio, the marginal rate of exchange between them, as

depicted in Figure 3.D.4(a). Were this not the case, the consumer could do better by marginally

changing her consumption. For example, if [∂u(x∗)/∂xl]/ [∂u(x∗)/∂xk] > (pl/pk), then an

increase in the consumption of good l of dxl , combined with a decrease in good k’s consumption

equal to (pl/pk)dxl , would be feasible and would yield a utility change of [∂u(x∗)/∂xl]dxl −
[∂u(x∗)/∂xk] (pl/pk)dxl > 0.

Figure 3.D.4(b) depicts the first-order conditions for the case of L = 2 when the consumer’s

optimal bundle x∗ lies on the boundary of the consumption set (we have x∗2 = 0 there). In this

case, the gradient vector need not be proportional to the price vector. In particular, the first-

order conditions tell us that ∂ul(x∗)/∂xl ≤ λ pl for those l with x∗l = 0 and ∂ul(x∗)/∂xl = λ pl

for those l with x∗L > 0. Thus, in the figure, we see that MRS12(x∗) > p1/p2. In contrast with

the case of an interior optimum, an inequality between the marginal rate of substitution and

the price ratio can arise at a boundary optimum because the consumer is unable to reduce her

consumption of good 2 (and correspondingly increase her consumption of good 1) any further.

The Lagrange multiplier λ in the first-order conditions (3.D.2) and (3.D.3) gives the marginal,

or shadow, value of relaxing the constraint in the UMP (this is a general property of Lagrange

multipliers; see Sections ?? and ?? of the Mathematical Appendix). It therefore equals the

consumer’s marginal utility value of wealth at the optimum. To see this directly, consider for

simplicity the case where x(p,w) is a differentiable function and x(p,w)� 0. By the chain rule,

the change in utility from a marginal increase in w is given by ∇u(x(p,w)) ·Dwx(p,w), where

Dwx(p,w) = [∂x1(p,w)/∂w, · · · ,∂xL(p,w)/∂w]. Substituting for ∇u(x(p,w)) from condition

(3.D.4), we get

∇u(x(p,w)) ·Dwx(p,w) = λ p ·Dwx(p,w) = λ ,

where the last equality follows because p ·x(p,w)=w holds for all w (Walras’ law) and therefore

p ·Dwx(p,w) = 1. Thus, the marginal change. in utility arising from a marginal increase in

wealth—the consumer’s marginal utility of wealth—is precisely λ .10

9Note that if utility is unchanged with differential changes in xl and xk, dxl and dxk, then [∂u(x)/∂xl ]dxl +

[∂u(x)/∂xk]dxk = 0. Thus, when xl falls by amount dxl < 0. the increase required in xk to keep utility unchanged is

precisely dxk = MRSlk(x∗)(−dxl).
10Note that if monotonicity of u(·) is strengthened slightly by requiring that ∇u(x) ≥ 0 and ∇u(x) 6= 0 for all x,

then condition (3.D.4) and p� 0 also imply that λ is strictly positive at any solution of the UMP.
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We have seen that conditions (3.D.2) and (3.D.3) must necessarily be satisfied by any x∗ ∈ (p,w).

When, on the other hand, does satisfaction of these first-order conditions by some bundle x imply that

x is a solution to the UMP? That is, when are the first-order conditions sufficient to establish that x is a

solution? If u(·) is quasiconcave and monotone and has ∇u(x) 6= 0 for all x ∈ RL
+, then the Kuhn-Tucker

first-order conditions are indeed sufficient (see Section ?? of the Mathematical Appendix). What if u(·)

is not quasiconcave? In that case, if u(·) is locally quasiconcave at x∗, and if x∗ satisfies the first-order

conditions, then x∗ is a local maximum. Local quasiconcavity can be verified by means of a determinant

test on the bordered Hessian matrix of u(·) at x∗. (For more on this, see Sections ?? and ?? of the

Mathematical Appendix.)

Example 3.D.1 illustrates the use of the first-order conditions in deriving the consumer’s

optimal consumption bundle.

Example 3.D.1. The Demand Function Derived from the Cobb-Douglas Utility Function. A

Cobb-Douglas utility function for L = 2 is given by u(x1,x2) = kxα
1 x1−α

2 for some α ∈ (0,1)

and k > 0. It is increasing at all (x1,x2)� 0 and is homogeneous of degree one. For our

analysis, it turns out to be easier to use the increasing transformation α lnx1 +(1−α) lnx2, a

strictly concave function, as our utility function. With this choice, the UMP can be stated as

Max
x1,x2

α lnx1 +(1−α) lnx2 (3.D.6)

s.t. p1x1 + p2x2 = w.

[Note that since u(·) is increasing, the budget constraint will hold with strict equality at any

solution.]

Since ln0 =−∞, the optimal choice (x1(p,w),x2(p,w)) is strictly positive and must satisfy

the first-order conditions (we write the consumption levels simply as x1 and x2 for notational

convenience)

α

x1
= λ p1 (3.D.7)

and

1−α

x2
= λ p2 (3.D.8)

for some λ ≥ 0, and the budget constraint p ·x(p,w) = w. Conditions (3.D.7) and (3.D.8) imply

that

p1x1 =
α

1−α
p2x2

or, using the budget constraint,

p1x1 =
α

1−α
(w− p1x1). (3.D.9)
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Hence (including the arguments of x1 and x2 once again)

x1(p,w) =
αw
p1

and (using the budget constraint)

x2(p,w) =
(1−α)w

p2

Note that with the Cobb-Douglas utility function, the expenditure on each commodity is a

constant fraction of wealth for any price vector p [a share of α goes for the first commodity and

a share of (1−α) goes for the second]. �

Exercise 3.D.1 Verify the three properties of Proposition 3.D.2 for the Walrasian demand func-

tion generated by the Cobb-Douglas utility function.

For the analysis of demand responses to changes in prices and wealth, it is also very help-

ful if the consumer’s Walrasian demand is suitably continuous and differentiable. Because the

issues are somewhat more technical, we will discuss the conditions under which demand satis-

fies these properties in Appendix A to this chapter. We conclude there that both properties hold

under fairly general conditions. Indeed, if preferences are continuous, strictly convex, and lo-

cally nonsatiated on the. consumption set RL
+, then x(p,w) (which is then a function) is always

continuous at all (p,w)� 0.

The Indirect Utility Function
For each (p,w)� 0, the utility value of the UMP is denoted v(p,w) ∈R. It is equal to u(x∗) for

any x∗ ∈ x(p,w). The function v(p,w) is called the indirect utility function and often proves to

be a very useful analytic tool. Proposition 3.D.3 identifies its basic properties.

Proposition 3.D.3. Suppose that u(·) is a continuous utility function representing a locally

nonsatiated preference relation % defined on the consumption set X = RL
+. The indirect utility

function v(p,w) is

(i) Homogeneous of degree zero.

(ii) Strictly increasing in w and nonincreasing in pl for any l.

(iii) Quasiconvex; that is, the set {(p,w) : v(p,w)≤ v̄} is convex for any v̄.11

Proof. Except for quasiconvexity and continuity all the properties follow readily from our pre-

vious discussion. We forgo the proof of continuity here but note that, when preferences are

strictly convex, it follows from the fact that x(p,w) and u(x) are continuous functions because

v(p,w) = u(x(p,w)) [recall that the continuity of x(p,w) is established in Appendix A of this

chapter].

To see that v(p,w) is quasiconvex, suppose that v(p,w) ≤ v̄ and v(p′,w′) ≤ v̄. For any

α ∈ [0,1], consider then the price-wealth pair (p′′,w′′) = (α p+(1−α)p′,αw+(1−α)w′).

11Note that property (iii) says that v(p,w) is quasiconvex, not quasi—it concave. Observe also that property (iii)

does not require for its validity that u(·) be quasiconcave.
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To establish quasiconvexity, we want to show that v(p′′,w′′) ≤ v̄. Thus, we show that for

any x with p′′ · x≤ w′′, we must have u(x)≤ v̄. Note, first, that if p′′ · x≤ w′′, then,

α p · x+(1−α)p′ · x≤ αw+(1−α)w′.

Hence, either p · x ≤ w or p′ · x ≤ w′ (or both). If the former inequality holds, then u(x)≤
v(p,w)≤ v̄, and we have established the result. If the latter holds, then u(x)≤ v(p′,w′)≤ v̄, and

the same conclusion follows. Q.E.D

Figure 3.D.5 The indirect utility function v(p,w) is

quasiconvex.

The quasiconvexity of v(p,w) can be verified graphically in Figure 3.D.5 for the case where

L = 2. There, the budget sets for price-wealth pairs (p,w) and (p′,w′) generate the same maxi-

mized utility value ū. The budget line corresponding to (p′′,w′′)= (α p+(1−α)p′,αw+(1−α)w′)

is depicted as a dashed line in Figure 3.D.5. Because (p′′,w′′) is a convex combination of (p,w)

and (p′,w′), its budget line lies between the budget lines for these two price-wealth pairs. As

can be seen in the figure, the attainable utility under (p′′,w′′) is necessarily no greater than ū.

Note that the indirect utility function depends on the utility representation chosen. In

particular, if v(p,w) is the indirect utility function when the consumer’s utility function is

u(·), then the indirect utility function corresponding to utility representation ũ(x) = f (u(x))

is ṽ(p,w) = f (v(p,w)).

Example 3.D.2. Suppose that we have the utility function u(x1,x2) = α lnx1 + (1−α) lnx2.

Then, substituting x1(p,w) and x2(p,w) from Example 3.D.1, into u(x) we have

v(p,w) = u(x(p,w))

= [α lnα +(1−α) ln(1−α)]+ lnw−α ln p1− (1−α) ln p2.

�

Exercise 3.D.2 Verify the four properties of Proposition 3.D.3 for the indirect utility function

derived in Example 3.D.2.
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3.E The Expenditure Minimization Problem

In this section, we study the following expenditure minimization problem (EMP) for p� 0 and

u > u(0):12

Min
x≥0

p · x

s.t. u(x)≥ u.

Figure 3.E.1 The expenditure minimization problem

(EMP).

Whereas the UMP computes the maximal level of utility that can be obtained given wealth w,

the EMP computes the minimal level of wealth required to reach utility level u. The EMP is

the “dual” problem to the UMP. It captures the same aim of efficient use of the consumer’s

purchasing power while reversing the roles of objective function and constraint.13

Throughout this section, we assume that u(·) is a continuous utility function representing a

locally nonsatiated preference relation % defined on the consumption set RL
+.

The EMP is illustrated in Figure 3.E.1. The optimal consumption bundle x∗ is the least

costly bundle that still allows the consumer to achieve the utility level u. Geometrically, it is the

point in the set
{

x ∈ RL
+ : u(x)≥ u

}
that lies on the lowest possible budget line associated with

the price vector p.

Proposition 3.E.1 describes the formal relationship between EMP and the UMP.

Proposition 3.E.1. Suppose that u(·) is a continuous utility function representing a locally

nonsatiated preference relation % defined on the consumption set X = RL
+ and that the price

vector is p� 0. We have

(i) if x∗ is optimal in the UMP when wealth is w > 0, then x∗ is optimal in the EMP when the

required utility level is u(x∗). Moreover, the minimized expenditure level in this EMP is

exactly w.

12Utility u(0) is the utility from consuming the consumption bundle x = (0,0, · · · ,0). The restriction to u > u(0)

rules out only uninteresting situations.
13The term “dual” is meant to be suggestive. It is usually applied to pairs of problems and concepts that are

formally similar except that the role of quantities and prices, and/or maximization and minimization, and/or objective

function and constraint, have been reversed.
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(ii) If x∗ is optimal in the EMP when the required utility level is u > u(0), then x∗ is optimal

in the LIMP when wealth is p · x∗. Moreover, the maximized utility level in this UMP is

exactly u.

Proof. (i)Suppose that x∗ is not optimal in the EMP with required utility level u(x∗). Then there

exists an x′ such that u(x′)≥ u(x∗) and p · x′ < p · x∗ ≤ w. By local nonsatiation, we can find an

x′′ very close to x′ such that u(x′′) > u(x′) and p · x′′ < w. But this implies that x′′ ∈ Bp,w and

u(x′′) > u(x∗), contradicting the optimality of x∗ in the UMP. Thus, x∗ must be optimal in the

EMP when the required utility level is u(x∗), and the minimized expenditure level is therefore

p · x∗. Finally, since ∗ solves the UMP when wealth is w, by Walras’ law we have p · x∗ = w.

(ii)Since u> u(0), we must have x∗ 6= 0. Hence, p ·x∗> 0. Suppose that x∗ is not optimal in

the UMP when wealth is p ·x∗. Then there exists an x′ such that u(x′)> u(x∗) and p ·x′ ≤ p ·x∗.
Consider a bundle x′′=αx′ where α ∈ (0,1) (x′′ is a “scaled-down” version of x′). By continuity

of u(·), if α is close enough to 1, then we will have u(x′′) > u(x∗) and p · x′′ < p · x∗. But this

contradicts the optimality of x∗ in the EMP. Thus, x∗ must be optimal in the UMP when wealth

is p · x∗, and the maximized utility level is therefore u(x∗). In Proposition ??(ii), we will show

that if x∗ solves the EMP when the required utility level is u, then u(x∗) = u. Q.E.D

As with the UMP, when p� 0 a solution to the EMP exists under very general conditions.

The constraint set merely needs to be nonempty; that is, u(·) must attain values at least as large

as u for some x (see Exercise 3.E). From now on, we assume that this is so; for example, this

condition will be satisfied for any u > u(0) if u(·) is unbounded above.

We now proceed to study the optimal consumption vector and the value function of the

EMP. We consider the value function first.

EXERCISES

Exercise 3.D.1 A consumer lives for two periods, denoted 1 and 2, and consumes a single

consumption good in each period. His wealth when born is w > 0. What is his (lifetime)

Walrasian budget set?

Exercise 3.D.2 A consumer consumes one consumption good x and hours of leisure h. The

price of the consumption good is p, and the consumer can work at a wage rate of s = 1. What is

the consumer’s Walrasian budget set?

Exercise 3.D.3 Consider an extension of the Walrasian budget set to an arbitrary consumption

set X : Bp,w = {x ∈ X : p · x≤ w}. Assume (p,w)� 0.

(a) If X is the set depicted in Figure 2.C.3, would Bp,w be convex?

(b) Show that if X is a convex set, then Bp,w is as well.

Exercise 3.D.4 Show that the budget set in Figure 3.D.4 is not convex.

Exercise 3.E.1 In text.

Exercise 3.E.2 In text.
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Exercise 3.E.3 Use Propositions 2.E.1 to 2.E.3 to show that p ·Dpx(p,w)p =−w. Interpret.

Exercise 3.E.4 Show that if x(p,w) is homogeneous of degree one with respect to w [ie.,

x(p,αw) = αx(p,w) for all α > 0] and satisfies Walras’ law, then εlw(p,w) = 1 for every l.

Interpret. Can you say something about Dwx(p,w) and the form of the Engel functions and

curves in this case?

Exercise 3.E.5 Suppose that x(p,w) is a demand function which is homogeneous of degree

one with respect to w and satisfies Walras’ law and homogeneity of degree zero. Suppose also

that all the cross-price effects are zero, that is ∂xl(p,w)/∂ pk = 0 whenever k 6= l. Show that this

implies that for every l,xl(p,w) = αw/pl , where αl > 0 is a constant independent of (p,w).

Exercise 3.E.6 Verify that the conclusions of Propositions 2.E.1 to 2.E.3 hold for the demand

function given in Exercise 2.E when β = 1.

Exercise 3.E.7 A consumer in a two-good economy has a demand function x(p,w) that satisfies

Walras’ law. His demand function for the first good is x1(p,w) = αw/p1. Derive his demand

function for the second good. Is his demand function homogeneous of degree zero?

Exercise 3.E.8 Show that the elasticity of demand for good l with respect to price pk,εlk(p,w),

can be written as εlk(p,w) = d ln(xl(p,w))/d ln(pk), where ln(·) is the natural logarithm func-

tion. Derive a similar expression for εlw(p,w). Conclude that if we estimate the parameters

(α0,α1,α2,γ) of the equation ln(xl(p,w)) = α0,α1 ln p1 +α2 ln p2 + γ lnw, these parameter es-

timates provide us with estimates of the elasticities εl1(p,w), εl2(p,w), and εlw(p,w).

Exercise 3.F.1 Show that for Walrasian demand functions, the definition of the weak axiom

given in Definition 2.F.1 coincides with that in Definition 1.C.1.

Exercise 3.F.2 Verify the claim of Example 2.F.1.

Exercise 3.F.3 You are given the following partial information about a consumer’s purchases.

He consumes only two goods.

Year1 Year2

Quantity Price Quantity Price

Good 1 100 100 120 100

Good 2 100 100 ? 80

Over what range of quantities of good 2 consumed in year 2 would you conclude:

(a) That his behavour is inconsistent (i.e., in contradiction with the weak axiom)?

(b) That the consumer’s consumption bundle in year 1 is revealed preferred to that in year 2?

(c) That the consumer’s consumption bundle in year 2 is revealed preferred to that in year l?

(d) That there is insufficient information to justify (a), (b), and/or (c)?

(e) That good 1 is an inferior good (at some price) for this consumer? Assume that the weak

axiom is satisfied.

(f) That good 2 is an inferior good (at some price) for this consumer? Assume that the weak

axiom is satisfied.
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Exercise 3.F.4 Consider the consumption of a consumer in two different periods, period 0 and

period 1. Period t prices, wealth, and consumption are pt , wt , and xt = x(pt ,wt ,), respectively.

It is often of applied interest to form an index measure of the quantity consumed by a consumer.

The Laspeyres quantity index computes the change in quantity using period 0 prices as weights:

LQ = (p0 · x1)/(p0 · x0). The Paasche quantity index instead uses period 1 prices as weights:

PQ = (p1 · x1)/(p1 · x0). Finally, we could use the consumer’s expenditure change: EQ = (p1 ·
x1)/(p0 · x0). Show the following:

(a) If LQ < 1, then the consumer has a revealed preference for x0 over x1.

(b) If PQ > 1, then the consumer has a revealed preference for x1 over x0.

(c) No revealed preference relationship is implied by either EQ > 1 or EQ < 1. Note that at the

aggregate level, EQ corresponds to the percentage change in gross national product.

Exercise 3.F.5 Suppose that x(p,w) is a differentiable demand function that satisfies the weak

axiom, Walras’ law, and homogeneity of degree zero. Show that if x(·, ·) is homogeneous of

degree one with respect to w [i.e., x(p,αw) = αx(p,w) for all (p,w) and α > 0], then the law

of demand holds even for uncompensated price changes. If this is easier, establish only the

infinitesimal version of this conclusion; that is, d p ·Dpx(p,w)d p≤ 0 for any d p.

Exercise 3.F.6 Suppose that x(p,w) is homogeneous of degree zero. Show that the weak axiom

holds if and only if for some w> 0 and all p,p′ we have p′ ·x(p,w)>w whenever p ·x(p′,w)≤w

and x(p′,w) 6= x(p,w).

Exercise 3.F.7 In text.

Exercise 3.F.8 Let ŝlk(p,w)= [pk/xl(p,w)]sli(p,w) be the substitution terms in elasticity form.

Express ŝlk(p,w) in terms of εlk(p,w), εlw(p,w), and bk(p,w).

Exercise 3.F.9 A symmetric n× n matrix A is negative definite if and only if (−1)k |Akk| > 0

for all k ≤ n, where Akk, is the submatrix of A obtained by deleting the last n− k rows and

columns. For semidefiniteness of the symmetric matrix A, we replace the strict inequalities

by weak inequalities and require that the weak inequalities hold for all matrices formed by

permuting the rows and columns of A (see Section M.D of the Mathematical Appendix for

details).

(a) Show that an arbitrary (possibly nonsymmetric) matrix A is negative definite (or semidefi-

nite) if and only if A+AT is negative definite (or semidefinite). Show also that the above

determinant condition (which can be shown to be necessary) is no longer sufficient in the

nonsymmetric case.

(b) Show that for L = 2, the necessary and sufficient condition for the substitution matrix

S(p,w) of rank 1 to be negative semidefinite is that any diagonal entry (i.e., any own-price

substitution effect) be negative.

Exercise 3.F.10 Consider the demand function in Exercise 2.E with β = 1. Assume that w = 1.

(a) Compute the substitution matrix. Show that at p = (1,1,1), it is negative semidefinite but

not symmetric.
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(b) Show that this demand function does not satisfy the weak axiom. [Hint: Consider the price

vector p = (1,1,ε) and show that the substitution matrix is not negative semidefinite (for

ε > 0 small).]

Exercise 3.F.11 Show that for L = 2, S(p,w) is always symmetric. [Hint: Use Proposition

??.]

Exercise 3.F.12 Show that if the Walrasian demand function x(p,w) is generated by a rational

preference relation, than it must satisfy the weak axiom.

Exercise 3.F.13 Suppose that x(p,w) may be multivalued.

(a) From the definition of the weak axiom given in Section 1.C, develop the generalization of

Definition 2.F.1 for Walrasian demand correspondences.

(b) Show that if x(p,w) satisfies this generalization of the weak axiom and Walras’ law, then

x(·) satisfies the following property:

(*) For any x ∈ x(p,w) and x′ ∈ x(p′,w′), if p · x′ < w, then p · x > w.

(c) Show that the generalized weak axiom and Walras’ law implies the following generalized

version of the compensated law of demand: Starting from any initial position (p,w) with

demand x ∈ x(p,w), for any compensated price change to new prices p′ and wealth level

w′ = p′ · x, we have

(p′− p) · (x′− x)≤ 0

for all x′ ∈ x(p′,w′), with strict inequality if x′ ∈ x(p,w).

(d) Show that if x(p,w) satisfies Walras’ law and the generalized compensated law of demand

defined in (c), then x(p,w) satisfies the generalized weak axiom.

Exercise 3.F.14 Show that if x(p,w) is a Walrasian demand function that satisfies the weak

axiom, then x(p,w) must be homogeneous of degree zero.

Exercise 3.F.15 Consider a setting with L = 3 and a consumer whose consumption set is R3.

The consumer’s demand function x(p,w) satisfies homogeneity of degree zero, Walras’ law and

(fixing p3 = 1) has

x1(p,w) =−p1 + p2

and

x2(p,w) =−p2

Show that this demand function satisfies the weak axiom by demonstrating that its substitution

matrix satisfies v ·S(p,w)v < 0 for all v 6= α p. [Hint: Use the matrix results recorded in Section

M.D of the Mathematical Appendix.] Observe then that the substitution matrix is not symmetric.

(Note: The fact that we allow for negative consumption levels here is not essential for finding a

demand function that satisfies the weak axiom but whose substitution matrix is not symmetric;

with a consumption set allowing only for nonnegative consumption levels, however, we would

need to specify a more complicated demand function.)



3.E. THE EXPENDITURE MINIMIZATION PROBLEM 69

Exercise 3.F.16 Consider a setting where L = 3 and a consumer whose consumption set is R3.

Suppose that his demand function x(p,w) is

x1(p,w) =
p2

p3
,

x2(p,w) =− p1

p3
,

x3(p,w) =
w
p3

.

(a) Show that x(p,w) is homogeneous of degree zero in (p,w) and satisfies Walras’ law.

(b) Show that x(p,w) violates the weak axiom.

(c) Show that v ·S(p,w)v = 0 for all v ∈ R3.

Exercise 3.F.17 In an L-commodity world, a consumer’s Walrasian demand function is

xk(p,w) =
w(

L
∑

l=1
pl

) for k = 1, · · · ,L.

(a) Is this demand function homogeneous of degree zero in (p,w)?

(b) Does it satisfy Walras’ law?

(c) Does it satisfy the weak axiom?

(d) Compute the Slutsky substitution matrix for this demand function. Is it negative semidefi-

nite? Negative definite? Symmetric?
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Chapter 6

Choice Under Uncertainty

6.A Introduction

In previous chapters, we studied choices that result in perfectly certain outcomes. In reality,

however, many important economic decisions involve an element of risk. Although it is formally

possible to analyze these situations using the general theory of choice developed in Chapter

1, there is good reason to develop a more specialized theory: Uncertain alternatives have a

structure that we can use to restrict the preferences that “rational” individuals may hold. Taking

advantage of this structure allows us to derive stronger implications than those based solely on

the framework of Chapter 1.

In Section 6.B, we begin our study of choice under uncertainty by considering a setting

in which alternatives with uncertain outcomes are describable by means of objectively known

probabilities defined on an abstract set of possible outcomes. These representations of risky

alternatives are called lotteries. In the spirit of Chapter 1, we assume that the decision maker

has a rational preference relation over these lotteries. We then proceed to derive the expected

utility theorem, a result of central importance. This theorem says that under certain conditions,

we can represent preferences by an extremely convenient type of utility function, one that pos-

sesses what is called the expected utility form. The key assumption leading to this result is the

independence axiom, which we discuss extensively.

In the remaining sections, we focus on the special case in which the outcome of a risky

choice is an amount of money (or any other one-dimensional measure of consumption). This

case underlies much of finance and portfolio theory, as well as substantial areas of applied

economics.

In Section 6.C, we present the concept of risk aversion and discuss its measurement. We

then study the comparison of risk aversions both across different individuals and across different

levels of an individual’s wealth.

Section 6.D is concerned with the comparison of alternative distributions of monetary re-

turns. We ask when one distribution of monetary returns can unambiguously be said to be “bet-

ter” than another, and also when one distribution can be said to be “more risky than” another.

These comparisons lead, respectively, to the concepts of first-order and second-order stochastic

dominance.

In Section 6.E, we extend the basic theory by allowing utility to depend on states of nature

underlying the uncertainty as well as on the monetary payoffs. In the process, we develop a

81
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framework for modeling uncertainty in terms of these underlying states. This framework is

often of great analytical convenience, and we use it extensively later in this book.

In Section 6.F, we consider briefly the theory of subjective probability. The assumption

that uncertain prospects are offered to us with known objective probabilities, which we use in

Section 6.B to derive the expected utility theorem, is rarely descriptive of reality. The subjective

probability framework offers a way of modeling choice under uncertainty in which the probabil-

ities of different risky alternatives are not given to the decision maker in any objective fashion.

Yet, as we shall see, the theory of subjective probability offers something of a rescue for our

earlier objective probability approach.

For further reading on these topics, see Kreps (1988) and Machina (1987). Diamond and

Rothschild (1978) is an excellent sourcebook for original articles.

6.B Expected Utility Theory

We begin this section by developing a formal apparatus for modeling risk. We then apply this

framework to the study of preferences over risky alternatives and to establish the important

expected utility theorem.

Description of Risky Alternatives
Let us imagine that a decision maker faces a choice among a number of risky alternatives. Each

risky alternative may result in one of a number of possible outcomes, but which outcome will

actually occur is uncertain at the time that he must make his choice.

Formally, we denote the set of all possible outcomes by C.1 These outcomes could take

many forms. They could, for example, be consumption bundles. In this case, C =X , the decision

maker’s consumption set. Alternatively, the outcomes might take the simpler form of monetary

payoffs. This case will, in fact, be our leading example later in this chapter. Here, however, we

treat C as an abstract set and therefore allow for very general outcomes.

To avoid some technicalities, we assume in this section that the number of possible out-

comes in C is finite, and we index these outcomes by n = 1, · · · ,N.

Throughout this and the next several sections, we assume that the probabilities of the vari-

ous outcomes arising from any chosen alternative are objectively known. For example, the risky

alternatives might be monetary gambles on the spin of an unbiased roulette wheel.

The basic building block of the theory is the concept of a lottery, a formal device that is

used to represent risky alternatives.

Definition 6.B.1. A simple lottery L is a list L=(p1, · · · , pN) with pn≥ 0 for all n and ∑n pn = 1,

where pn is interpreted as the probability of outcome n occurring.

A simple lottery can be represented geometrically as a point in the (N− 1) dimensional

simplex, ∆ =
{

p ∈ RN
+ : p1 + · · ·+ pN = 1

}
. Figure 6.B.1(a) depicts this simplex for the case in

1It is also common, following Savage (1954), to refer to the elements of C as consequences.
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Figure 6.B.1 Representations of the simplex when N = 3. (a) Three-dimensional representation. (b)

Two-dimensional representation.

which N = 3. Each vertex of the simplex stands for the degenerate lottery where one outcome is

certain and the other two outcomes have probability zero. Each point in the simplex represents

a lottery over the three outcomes. When N = 3, it is convenient to depict the simplex in two

dimensions, as in Figure 6.B.1(b), where it takes the form of an equilateral triangle.2

In a simple lottery, the outcomes that may result are certain. A more general variant of a

lottery, known as a compound lottery, allows the outcomes of a lottery themselves to be simple

lotteries.3

Definition 6.B.2. Given K simple lotteries Lk = (pk
1, · · · , pk

N),k = 1, · · · ,K, and probabilities

α ≥ 0 with ∑k αk = 1, the compound lottery (L1, · · · ,LK ;α1, · · · ,αK) is the risky alternative that

yields the simple lottery Lk with probability αk for k = 1, · · · ,K.

For any compound lottery (L1, · · · ,LK ;α1, · · · ,αK), we can calculate a corresponding re-

duced lottery as the simple lottery L = (p1, · · · , pN) that generates the same ultimate distribution

over outcomes. The value of each pn is obtained by multiplying the probability that each lottery

Lk arises, αk, by the probability pk
n that outcome n arises in lottery Lk, and then adding over k.

That is, the probability of outcome n in the reduced lottery is

pn = α1 p1
n + · · ·+αK pK

n

2Recall that equilateral triangles have the property that the sum of the perpendiculars from any point to. the three

sides is equal to the altitude of the triangle. It is therefore common to depict the simplex when N = 3 as an equilateral

triangle with altitude equal to 1 because by doing so, we have the convenient geometric property that the probability

pn of outcome n in the lottery associated with some point in this simplex is equal to the length of the perpendicular

from this point to the side opposite the vertex labeled n.
3We could also define compound lotteries with more than two stages. We do not do so because we will not need

them in this chapter. The principles involved, however, are the same.
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Figure 6.B.2 The reduced lottery of a compound lot-

tery.

Figure 6.B.3 Two compound lotteries with the same reduced lottery.

for n = 1, · · · ,N.4 Therefore, the reduced lottery L of any compound lottery

(L1, · · · ,LK ;α1, · · · ,αK) can be obtained by vector addition:

L = α1L1 + · · ·+αKLK ∈ ∆

In Figure 6.B.2, two simple lotteries L1 and L2 are depicted in the simplex ∆. Also depicted

is the reduced lottery 1
2 L1 +

1
2 L2 for the compound lottery (L1,L2; 1

2 ,
1
2) that yields either L1 or

L2 with a probability of 1
2 each. This reduced lottery lies at the midpoint of the line segment

connecting L1 and L2. The linear structure of the space of lotteries is central to the theory of

choice under uncertainty, and we exploit it extensively in what follows.

Preferences over Lotteries
Having developed a way to model risky alternatives, we now study the decision maker’s pref-

erences over them. The theoretical analysis to follow rest on a basic consequentialist premise:

We assume that for any risky alternative, only the reduced lottery over final outcomes is of rel-

evance to the decision maker. Whether the probabilities of various outcomes arise as a result of

a simple lottery or of a more complex compound lottery has no significance. Figure 6.B.3 ex-

hibits two different compound lotteries that yield the same reduced lottery. Our consequentialist

hypothesis requires that the decision maker view these two lotteries as equivalent.
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We now pose the decision maker’s choice problem in the general framework developed in

Chapter 1 (see Section 1.B). In accordance with our consequentialist premise, we take the set

of alternatives, denoted here by L , to be the set of all simple lotteries over the set of outcomes

C. We next assume that the decision maker has a rational preference relation % on L , a com-

plete and transitive relation allowing comparison of any pair of simple lotteries. It should be

emphasized that, if anything, the rationality assumption is stronger here than in the theory of

choice under certainty discussed in Chapter 1. The more complex the alternatives, the heavier

the burden carried by the rationality postulates. In fact, their realism in an uncertainty context

has been much debated. However, because we want to concentrate on the properties that are

specific to uncertainty, we do not question the rationality assumption further here.

We next introduce two additional assumptions about the decision maker’s preferences over

lotteries. The most important and controversial is the independence axiom. The first, however,

is a continuity axiom similar to the one discussed in Section 3.C.

Definition 6.B.3. The preference relation % on the space of simple lotteries L is continuous if

for any L,L′,L′′ ∈L , the sets{
α ∈ [0,1] : αL+(1−α)L′ % L′′

}
⊂ [0,1]

and {
α ∈ [0,1] : L′′ % αL+(1−α)L′

}
⊂ [0,1]

are closed.

In words, continuity means that small changes in probabilities do not change the nature of

the ordering between two lotteries. For example, if a “beautiful and uneventful trip by car” is

preferred to “staying home,” then a mixture of the outcome “beautiful and uneventful trip by

car” with a sufficiently small but positive probability of “death by car accident” is still preferred

to “staying home.” Continuity therefore rules out the case where the decision maker has lexico-

graphic (“safety first”) preferences for alternatives with a zero probability of some outcome (in

this case, “death by car accident”).

As in Chapter 3, the continuity axiom implies the existence of a utility function repre-

senting %, a function U : L → R such that L % L′ if and only if U(L) %U(L′). Our second

assumption, the independence axiom, will allow us to impose considerably more structure on

U(·).5

Definition 6.B.4. The preference relation% on the space of simple lotteries L satisfies the —it

independence axiom if for all L,L′,L′′ ∈L and α ∈ (0,1) we have

L% L′ if and only if αL+(1−α)L′′ % αL′+(1−α)L′′

In other words, if we mix each of two lotteries with a third one, then the preference ordering

of the two resulting mixtures does not depend on (is independent of) the particular third lottery

used.
5The independence axiom was first proposed by von Neumann and Morgenstern (1944) as an incidental result in

the theory of games.
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Figure 6.B.4 The independence axiom.

Suppose, for example, that L % L′ and α = 1
2 . Then 1

2 L+ 1
2 L′′ can be thought of as the

compound lottery arising from a coin toss in which the decision maker gets L if heads comes up

and L′′ if tails does. Similarly, 1
2 L′+ 1

2 L′′ would be the coin toss where heads results in L′ and

tails results in L′′ (see Figure 6.B.4). Note that conditional on heads, lottery 1
2 L+ 1

2 L′′ is at least

as good as lottery 1
2 L′+ 1

2 L′′; but conditional on tails, the two compound lotteries give iden!ical

results. The independence axiom requires the sensible conclusion that 1
2 L+ 1

2 L′′ be at least as

good as 1
2 L′+ 1

2 L′′.

The independence axiom is at the heart of the theory of choice under uncertainty. It is un-

like anything encountered in the formal theory of preference-based choice discussed in Chapter

1 or its applications in Chapters 3 to 5. This is so precisely because it exploits, in a fundamental

manner, the structure of uncertainty present in the model. In the theory of consumer demand,

for example, there is no reason to believe that a consumer’s preferences over various bundles of

goods 1 and 2 should be independent of the quantities of the other goods that he will consume.

In the present context, however, it is natural to think that a decision maker’s preference between

two lotteries, say L and L′, should determine which of the two he prefers to have as part of a

compound lottery regardless of the other possible outcome of this compound lottery, say L′′.

This other outcome L′′ should be irrelevant to his choice because, in contrast with the consumer

context, he does not consume L or L′ together with L′′ but, rather, only —it instead of it (if L or

L′ is the realized outcome).

Exercise 6.B.1 Show that if the preferences % over L satisfy the independence axiom, then

for all α ∈ (0,1) and L,L′,L′′ ∈L we have

L� L′ if and only if αL+(1−α)L′′ � αL′+(1−α)L′′

and

L∼ L′ if and only if αL+(1−α)L′′ ∼ αL′+(1−α)L′′

Show also that if L� L′ and L′′ � L′′′, then αL+(1−α)L′′ � αL′+(1−α)L′′′.

As we will see shortly, the independence axiom is intimately linked to the -representability

of preferences over lotteries by a utility function that has an expected utility form. Before ob-

taining that result, we define this property and study,some of its features.
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Definition 6.B.5. The utility function U : L → R has an expected utility form if there is an

assignment of numbers (u1, · · · ,uN) to the N outcomes such that for every simple lottery L =

(p1, · · · , pN) ∈L we have

U(L) = u1 p1 + · · ·+uN pN

A utility function U : L →R with the expected utility form is called a von Neumann-Morgenstern

(v.N-M) expected utility function.

Observe that if we let Ln denote the lottery that yields outcome n with probability one, then

U(Ln) = un. Thus, the term expected utility is appropriate because with the v.N-M expected

utility form, the utility of a lottery can be thought of as the expected value of the utilities un of

the N outcomes.

The expression U(L) = ∑n un pn is a general form for a linear function in the probabilities

(p1, · · · , pN). This linearity property suggests a useful way to think about the expected utility

form.

Proposition 6.B.1. A utility function U : L → R has an expected utility form if and only if it

is linear, that is, if and only if it satisfies the property that

U

(
K

∑
k=1

αkLk

)
=

K

∑
k=1

αkU(Lk) (6.B.1)

for any K lotteries Lk ∈L ,k = 1, · · · ,K, and probabilities (α1, · · · ,αK)≥ 0, ∑k αk = 1.

Proof. Suppose that U(·) satisfies property (6.B.1). We can write any L = (p1, · · · , pN) as a

convex combination of the degenerate lotteries (L1, · · · ,LN), that is, L = ∑n pnLn. We have then

U(L) =U(∑n pnLn) = ∑n pnU(Ln) = ∑n pnun. Thus, U(·) has the expected utility form.

In the other direction, suppose that U(·) has the expected utility form, and consider any

compound lottery (L1, · · · ,LK ;α1, · · · ,αK), where Lk = (pk
1, · · · , pk

N). Its reduced lottery is L′ =

∑k αkLk. Hence,

U

(
∑
k

αkLk

)
= ∑

n
un

(
∑
k

αk pk
n

)
= ∑

k
αk

(
∑
n

un pk
n

)
= ∑

k
αkU(Lk)

Thus, property (6.B.1) is satisfied. Q.E.D

The expected utility property is a cardinal property of utility functions defined on the space of

lotteries. In particular, the result in Proposition 6.B.2 shows that the expected utility form is

preserved only by increasing linear transformations.

Proposition 6.B.2. Suppose that U : L → R is a v.N-M expected utility function for the pref-

erence relation % on L . Then Ũ : L →R is another v.N-M utility function for % if and only if

there are scalars β > 0 and γ such that Ũ(L) = βU(L)+ γ for every L ∈L .

Proof. Begin by choosing two lotteries L and L with the property that L% L% L, for all L∈L ,6

If L∼ L, then every utility function is a constant and the result follows immediately. Therefore,

we assume from now on that L� L.
6These best and worst lotteries can be shown to exist. We could, for example, choose a maximizer and a minimizer

of the linear, hence continuous, function U(·) on the simplex of probabilities, a compact set.
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Note first that if U(·) is a v.N-M expected utility function and Ũ(L) = βU(L)+ γ , then

Ũ

(
K

∑
k=1

αkLk

)
= βU

(
K

∑
k=1

αkLk

)
+ γ

= β

[
K

∑
k=1

αkU(Lk)

]
+ γ

=
K

∑
k=1

αk [βU(Lk)+ γ]

=
K

∑
k=1

αkŨ(Lk).

Since Ũ(·) satisfies property (6.B.1), it has the expected utility form.

For the reverse direction, we want to show that if both Ũ(·) and U(·) have the expected

utility form, then constants β > 0 and γ exist such that Ũ(L) = βU(L)+ γ for all L ∈L . To do

so, consider any lottery L ∈L , and define λL ∈ [0,1] by

U(L) = λLU(L)+(1−λL)U(L).

Thus

λL =
U(L)−U(L)
U(L)−U(L)

(6.B.2)

Since λLU(L)+(1−λL)U(L) =U(λLL+(1−λL)L) and U(·) represents the preferences %, it

must be that L ∼ λLL+(1−λL)L. But if so, then since Ũ(·) is also linear and represents these

same preferences, we have

Ũ(L) = Ũ(λLL+(1−λL)L)

= λLŨ(L)+(1−λL)Ũ(L)

= λL(Ũ(L)−Ũ(L))+Ũ(L).

Substituting for λL, from (6.B.2) and rearranging terms yields the conclusion that Ũ(L) =

βU(L)+ γ , where

β =
Ũ(L)−Ũ(L)
U(L)−U(L)

and

γ = Ũ(L)−U(L)
Ũ(L)−Ũ(L)
U(L)−U(L)

.

This completes the proof Q.E.D

A consequence of Proposition 6.B.2 is that for a utility function with the expected utility

form, differences of utilities have meaning. For example, if there are four outcomes, the state-

ment “the difference in utility between outcomes 1 and 2 is greater than the difference between

outcomes 3 and 4,” u1−u2 > u3−u4, is equivalent to

1
2

u1 +
1
2

u4 >
1
2

u2 +
1
2

u3.
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Therefore, the statement means that the lottery L = (1
2 ,0,0,

1
2) is preferred to the lottery

L′ = (0, 1
2 ,

1
2 ,0). This ranking of utility differences is preserved by all linear transformations of

the v.N-M expected utility function.

Note that if a preference relation % on L is representable by a utility function U(·) that

has the expected utility form, then since a linear utility function is continuous, it follows that %

is continuous on L . More importantly, the preference relation % must also satisfy the indepen-

dence axiom. You are asked to show this in Exercise 6.B.2.

Exercise 6.B.2 Show that if the preference relation% on L is represented by a utility function

U(·) that has the expected utility form, then % satisfies the independence axiom.

The expected utility theorem, the central result of this section, tells us that the converse is

also true.

The Expected Utility Theorem
The expected utility theorem says that if the decision maker’s preferences over lotteries satisfy

the continuity and independence axioms, then his preferences are representable by a utility

function with the expected utility form. It is the most important result in the theory of choice

under uncertainty, and the rest of the book bears witness to its usefulness.

Before stating and proving the result formally, however, it may be helpful to attempt an

intuitive understanding of why it is true.

Consider the case where there are only three outcomes. As we have already observed,

the continuity axiom insures that preferences on lotteries can be represented by some utility

function. Suppose that we represent the indifference map in the simplex, as in Figure 6.B.5.

Assume, for simplicity, that we have a conventional map with one-dimensional indifference

curves. Because the expected utility form is linear in the probabilities, representability by the

expected utility form is equivalent to these indifference curves being straight, parallel lines (you

should check this). Figure 6.B.5(a) exhibits an indifference map satisfying these properties. We

now argue that these properties are, in fact, consequences of the independence axiom.

Indifference curves are straight lines if, for every pair of lotteries L,L′, we have that L∼ L′

implies αL+ (1−α)L′ ∼ L for all α ∈ [0,1]. Figure 6.B.5(b) depicts a situation where the

indifference curve is not a straight line; we have L′ ∼ L but 1
2 L′+ 1

2 L� L. This is equivalent to

saying that

1
2

L′+
1
2

L� 1
2

L+
1
2

L. (6.B.3)

But since L∼ L′, the independence axiom implies that we must have 1
2 L′+ 1

2 L∼ 1
2 L+ 1

2 L

(see Exercise 6.B.1). This contradicts (6.B.3), and so we must conclude that indifference curves

are straight lines.

Figure 6.B.5(c) depicts two straight but nonparallel indifference lines. A violation of the

independence axiom can be constructed in this case, as indicated in the figure. There we have
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L % L′ (in fact, L ∼ L′), but 1
3 L+ 2

3 L′′ % 1
3 L′+ 2

3 L′′ does not hold for the lottery L′′ shown in

the figure. Thus, indifference curves must be parallel, straight lines if preferences satisfy the

independence axiom.

Figure 6.B.5 Geometric explanation of the expected utility theorem. (a) % is representable by a utility function

with the expected utility form. (b) Contradiction of the independence axiom. (c) Contradiction of the independence

axiom.

Proposition 6.B.3. (Expected Utility Theorem) Suppose that the rational preference relation %

on the space of lotteries L satisfies the continuity and independence axioms. Then % admits

a utility representation of the expected utility form. That is, we can assign a number un to

each outcome n = 1, · · · ,N in such a manner that for any two lotteries L = (p1, · · · , pN) and

L′ = (p′1, · · · ,P′N), we have

L% L′ if and only if
N

∑
n=1

un pn ≥
N

∑
n=1

un p′n. (6.B.4)
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Part II
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In Part I, we analyzed individual decision making, both in abstract decision problems and in

more specific economic settings. Our primary aim was to lay the groundwork for the study of

how the simultaneous behavior of many self-interested individuals (including firms) generates

economic outcomes in market economies. Most of the remainder of the book is devoted to this

task. In Part II, however, we study in a more general way how multiperson interactions can be

modeled.

A central feature of multiperson interaction is the potential for the presence of strategic

interdependence. In our study of individual decision making in Part I, the decision maker faced

situations in which her well-being depended only on the choices she made (possibly with some

randomness). In contrast, in multiperson situations with strategic interdependence, each agent

.recognizes that the payoff she receives (in utility or profits) depends not only on her own actions

but also on the actions of other individuals. The actions that are best for her to take may depend

on actions these other individuals have already taken, on those she expects them to be taking at

the same time, and even on future actions that they may take, or decide not to take, as a result of

her current actions.

The tool that we use for analyzing settings with strategic interdependence is noncoopera-

tive game theory. Although the term “game” may seem to undersell the theory’s importance,

it correctly highlights the theory’s central feature: The agents under study are concerned with

strategy and winning (in the general sense of utility or profit maximization) in much the same

way that players of most parlor games are.

Multiperson economic situations vary greatly in the degree to which strategic interaction

is present. In settings of monopoly (where a good is sold by only a single firm; see Section ??)

or of perfect competition (where all agents act as price takers; see Chapter 8 and Part ??), the

nature of strategic interaction is minimal enough that our analysis need not make any formal use

of game theory.1 In other settings, however, such as the analysis of oligopolistic markets (where

there is more than one but still not many sellers of a good; see Sections ?? to ??), the central

role of strategic interaction makes game theory indispensable for our analysis.

Part II is divided into three chapters. Chapter 7 provides a short introduction to the basic

elements of noncooperative game theory, including a discussion of exactly what a game is, some

ways of representing games, and an introduction to a central concept of the theory, a player’s

strategy. Chapter ?? addresses how we can predict outcomes in the special class of games in

which all the players move simultaneously, known as simultaneous-move games. This restricted

focus helps us isolate some central issues while deferring a number of more difficult ones.

Chapter ?? studies dynamic games in which players’ moves may precede one another, and in

which some of these more difficult (but also interesting) issues arise.

Note that we have used the modifier noncooperative to describe the type of game theory we

discuss in Part II. There is another branch of game theory, known as cooperative game theory,

1However, we could well do so in both cases; see, for example, the proof of existence of competitive equilibrium

in Chapter ??, Appendix ??. Moreover, we shall stress bow perfect competition can be viewed usefully as a limiting

case of oligopolistic strategic interaction; see, for example, Section ??.
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that we do not discuss here. In contrast with noncooperative game theory, the fundamental units

of analysis in cooperative theory are groups and subgroups of individuals that are assumed, as

a primitive of the theory, to be able to attain particular outcomes for themselves through bind-

ing cooperative agreements. Cooperative game theory has played an important role in general

equilibrium theory, and we provide a brief introduction to it in Appendix A of Chapter ??. We

should emphasize that the term noncooperative game theory does not mean that noncooperative

theory is incapable of explaining cooperation within groups of individuals. Rather, it focuses on

how cooperation may emerge as rational behavior in the absence of an ability to make binding

agreements (e.g., see the discussion of repeated interaction among oligopolists in Chapter ??).

Some excellent recent references for further study of noncooperative game theory are Fu-

denberg and Tirole (3, 1991), Myerson (7, 1992), and Osborne and Rubinstein (9, 1994), and at

a more introductory level Gibbons (4, 1992) and Bimnore (1, 1992). Kreps (5, 1990) provides

a very interesting discussion of some of the strengths and weaknesses of the theory. Von Neu-

mann and Morgenstern (8, 1944), Luce and Raiffa (6, 1957), and Schelling (10, 1960) remain

classic references.
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Chapter 7

Basic Elements of Noncooperative

Games

7.A Introduction

In this chapter, we begin our study of noncooperative game theory by introducing some of its

basic building blocks. This material serves as a prelude to our analysis of games in Chapters ??
and ??.

Section ?? begins with an informal introduction to the concept of a game. It describes the

four basic elements of any setting of strategic interaction that we must know to specify a game.

In Section ??, we show how a game can be described by means of what is called its ex-

tensive form representation. The extensive form representation provides a very rich description

of a game, capturing who moves when, what they can do, what they know when it is their turn

to move, and the outcomes associated with any collection of actions taken by the individuals

playing the game.

In Section ??, we introduce a central concept of game theory, a player’s strategy. A player’s

strategy is a complete contingent plan describing the actions she will take in each conceivable

evolution of the game. We then show how the notion of a strategy can be used to derive ( much

more compact representation of a game, known as its normal (or strategic) form representation.

In Section ??, we consider the possibility that a player might randomize her choices. This

gives rise to the notion of a mixed strategy.
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In Part III, our focus shifts to the fundamental issue of economics: the organization of produc-

tion and the allocation of the resulting commodities among consumers. This fundamental issue

can be addressed from two perspectives, one positive and the other normative.

From a positive (or descriptive) perspective, we can investigate the determination of pro-

duction and consumption under various institutional mechanisms. The institutional arrangement

that is our central focus is that of a market (or private ownership) economy. In a market econ-

omy, individual consumers have ownership rights to various assets (such as their labor) and are

free to trade these assets in the marketplace for other assets or goods. Likewise, firms, which

are themselves owned by consumers, decide on their production plan and trade in the market

to secure necessary inputs and sell the resulting outputs. Roughly speaking, we can identify a

market equilibrium as an outcome of a market economy in which each agent in the economy

(i.e., each consumer and firm) is doing as well as he can given the actions of all other agents.

In contrast, from a normative (or prescriptive) perspective, we can ask what constitutes

a socially optimal plan of production and consumption (of course, we will need to be more

specific about what “socially optimal” means), and we can then examine the extent to which

specific institutions, such as a market economy, perform well in this regard.

In Chapter 8, we study competitive (or perfectly competitive) market economies for the

first time. These are market economies in which every relevant good is traded in a market

at publicly known prices and all agents act as price takers (recall that much of the analysis

of individual behavior in Part I was geared to this case). We begin by defining, in a general

way, two key concepts: competitive (or Walrasian) equilibrium and Pareto optimality (or Pareto

efficiency). The concept of competitive equilibrium provides us with an appropriate notion of

market equilibrium for competitive market economies. The concept of Pareto optimality offers

a minimal and uncontroversial test that any social optimal economic outcome should pass. An

economic outcome is said to be Pareto optimal if it is impossible to make some individuals

better off without making some other individuals worse off. This concept is a formalization of

the idea that there is no waste in society, and it conveniently separates the issue of economic

efficiency from more controversial (and political). questions regarding the ideal distribution of

well-being across individuals.

Chapter 8 then explores these two concepts and the relationships between them in the

special context of the partial equilibrium model. The partial equilibrium model, which forms the

basis for our analysis throughout Part III, offers a considerable analytical simplification; in it, our

analysis can be conducted by analyzing a single market (or a small group of related markets) at a

time. In this special context, we establish two central results regarding the optimality properties

of competitive equilibria, known as the fundamental theorems of welfare economics. These can

be roughly paraphrased as follows:

The First Fundamental Welfare Theorem. If every relevant good is traded in a

market at publicly known prices (i.e., if there is a complete set of markets), and if

households and firms act perfectly competitively (i.e., as price takers), then the mar-
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ket outcome is Pareto optimal. That is when markets are complete, any competitive

equilibrium is necessarily Pareto optimal.

The Second Fundamental Welfare Theorem. If household preferences and firm

production sets are convex, there is a complete set of markets with publicly·known

prices, and every agent acts as a price taker, then any Pareto optimal outcome can be

achieved as a competitive equilibrium if appropriate lump-sum transfers of wealth

are arranged.

The first welfare theorem provides a set of conditions under which we can be assured that

a market economy will achieve a Pareto optimal result; it is in a sense, the formal expression

of Adam Smith’s claim about the “invisible hand” of the market. The second welfare theorem

goes even further. It states that under the same set of assumptions as the first welfare theorem

plus convexity conditions, all Pareto optimal outcomes can in principle be implemented through

the market mechanism. That is, a public authority who wishes to implement a particular Pareto

optimal outcome (reflecting, say, some political consensus on proper distributional goals) may

always do so by appropriately redistributing wealth and then “letting the market work.”

In an important sense, the first fundamental welfare theorem establishes the perfectly com-

petitive ca.se as a benchmark for thinking about outcomes in market economies. In particular,

any inefficiencies that arise in a market economy, and hence any role for Pareto-improving

market intervention, must be traceable to a violation of at least one of the assumptions of this

theorem.

The remainder of Part III, Chapters ?? to ??, can be viewed as a development of this theme.

In these chapters, we study a number of ways in which actual markets may depart from this

perfectly competitive ideal and where, as a result, market equilibria fail to be Pareto optimal, a

situation known as market failure.

In Chapter ??, we study externalities and public goods. In both cases, the actions of one

agent directly affect the utility functions or production sets of other agents in the economy.

We see there that the presence of these nonmarketed “goods” or “bads” (which violates the

complete markets assumption of the first welfare theorem) undermines the Pareto optimality of

market equilibrium.

In Chapter ??, we turn to the study of settings in which some agents in the economy have

market power and, as a result, fail to act as price takers. Once again, an assumption of the first

fundamental welfare theorem fails to hold, and market equilibria fail to be Pareto optimal as a

result.

In Chapters ?? and ??, we consider situations in which an asymmetry of information ex-

ists among market participants. The complete markets assumption of the first welfare theorem

implicitly requires that the characteristics of traded commodities be observable by all market

participants because, without this observability, distinct markets cannot exist for commodities

that have different characteristics. Chapter ?? focuses on the case in which asymmetric in-

formation exists between agents at the time of contracting. Our discussion highlights several
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phenomena-adverse selection, signaling, and screening-that can arise as a result of this infor-

mational imperfection, and the welfare loss that it causes. Chapter ?? in contrast, investigates

the case of postcontractual asymmetric information, a problem that leads us to the study of the

principal-agent model. Here, too, the presence of asymmetric information prevents trade of all

relevant commodities and can lead market outcomes to be Pareto inefficient.

We rely extensively in some places in Part III on the tools that we developed in Parts I and

II. This is particularly true in Chapter 8, where we use material developed in Part I, and Chapters

?? and ??, where we use the game-theoretic tools developed in Part II.

A much more complete and general study of competitive market economies and the fun!iamental

welfare theorems is reserved for Part ??.





Chapter 8

Competitive Markets

8.A Introduction

In this chapter, we consider, for the first time, an entire economy in which consumers and

firms interact through markets. The chapter has two principal goals: first, to formally introduce

and study two key concepts, the notions of Pareto optimality and competitive equilibrium, and

second, to develop a somewhat special but analytically very tractable context for the study of

market equilibrium, the partial equilibrium model.

We begin in Section lO.B by presenting the notions of a Pareto optimal (or Pareto efficient)

allocation and of a competitive (or Walrasian) equilibrium in a general setting.

Starting in Section ??, we narrow our focus to the partial equilibrium context. The partial

equilibrium approach, which originated in Marshall (1920), envisions the market for a single

good (or group of goods) for which each consumer’s expenditure constitutes only a small por-

tion of his overall budget. When this is so, it is reasonable to assume that changes in the market

for this good will leave the prices of all other commodities approximately unaffected and that

there will be, in addition, negligible wealth effects in the market under study. We capture these

features in the simplest possible way by considering a two-good model in which the expen-

diture on all commodities other than that under consideration is treated as a single composite

commodity (called the numeraire commodity), and in which consumers’ utility functions take a

quasilinear form with respect to this numeraire. Our study of the competitive equilibria of this

simple model lends itself to extensive demand-and-supply graphical analysis. We also discuss

how to determine the comparative statics effects that arise from exogenous changes in the mar-

ket environment. As an illustration, we consider the effects on market equilibrium arising from

the introduction of a distortionary commodity tax.

In Section ??, we analyze the properties of Pareto optimal allocations in the partial equi-

librium model. Most significantly, we establish for this special context the validity of the fun-

damental theorems of welfare economics: Competitive equilibrium allocations are necessarily

Pareto optimal, and any Pareto optimal allocation can be achieved as a competitive equilibrium

if appropriate lump-sum transfers are made. As we noted in the introduction to Part III, these re-

sults identify an important benchmark case in which market equilibria yield desirable economic

outcomes. At the same time, they provide a framework for identifying situations of market

failure, such as those we study in Chapters ?? to ??.

In Section ??, we consider the measurement of welfare changes in the partial equilibrium
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context. We show that these can be represented by areas between properly defined demand and

supply curves. As an application, we examine the deadweight loss of distortionary taxation.

Section ?? contemplates settings characterized by free entry, that is, settings in which all

potential firms have access to the most efficient technology and may enter and exit markets in

response to the profit opportunities they present. We define a notion of long-run competitive

equilibrium and then use it to distinguish between long run and short-run comparative static

effects in response to changes in market conditions.

In Section ??, we provide a more extended discussion of the use of Partial equilibrium

analysis in economic modeling.

The material covered in this chapter traces its roots far back in economic thought. An

excellent source for further reading is Stigler (1987). We should emphasize that the analysis

of competitive equilibrium and Pareto optimality presented here is very much a first pass. In

Part ?? we return to the topic for a more complete and general investigation; many additional

references will be given there.
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